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ABSTRACT

The limited understanding of functional annotation of non-coding RNAs (ncRNAs) has been largely due to the 
complex functionalities of ncRNAs. They perform a vital part in the operation of the cell. There are many ncRNAs 
available such as micro RNAs or long non-coding RNAs that play important functions in the cell. In practice, there 
is a strong binding of the function of RNAs that must be considered to develop computational intelligent techniques. 
Comprehensive modeling of the structure of an ncRNA is essential that may provide the first clue towards an 
understanding of its functions. Many computational techniques have been developed to predict ncRNAs structures 
but few of them focused on the functions of ncRNA genes. Nevertheless, the accuracy of the functional annotation of 
ncRNAs is still facing computational challenges and results are not satisfactory. Here, many computational intelligent 
methods were described in this paper to predict the functional annotation of ncRNAs. The current literature review 
is suggested that there is still a dire need to develop advanced computational techniques for functional annotating of 
ncRNA genes in terms of accuracy and computational time.
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INTRODUCTION

The discovery of non-coding RNA has made us realize that coding DNA is highly relevant in the regulation of gene 
expression. Due to their vital functional role in the cell operation, this type of genes has been used in many studies. 
Compare to coding RNAs, the recent studies showed that the non-coding RNAs (ncRNAs) play a vital role in the 
functional side of the cell. Nowadays, the researchers are building computational intelligent techniques for prediction 
of ncRNAs structure and functional annotation of ncRNAs genes [1,2]. In the case of the genome sequence, the 
authors utilized many ncRNA genes for classification of RNA structures and functional discovery [3-5]. As a result, 
the authors described in different studies that it became obvious important to predict RNA structure along with the 
function. However, a few studies computational intelligence techniques focused on developing intelligent system for 
ncRNAs genes. 

MicroRNAs (miRNAs/miRs) are newly discovered that have changed the understanding of how genes are regulated. 
Several studies were developed based on conventional and advanced machine learning algorithms to detect the 
functional annotation of ncRNAs genes. But still, it is unknown for many scientists, some of the important functions 
of ncRNAs that must be discovered. Long non-coding RNA (lncRNAs) transcripts micro RNAs (mRNAs) genes but 
lacks in coding for a novel function of ncRNAs. So discovering a function of RNAs it is essential to have a good 
model of its structure. It is not only challenging to know the complete structure of RNA [6]. This process is also 
tiresome and took time as well. Few computational models for predicting RNA secondary structure have been around 
somewhere in the early to mid-seventies. In Figure 1, we have given a broad overview of the type of structures and 
resources to analyze them in many different characteristics. 
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Figure 1 The branch structure of genomic variations in long ncRNAs (lncRNAs) 
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Good modeling of RNA structure is critical that provides some of the evidence or information towards a clear 
explanation of its function. Despite the advancement in high throughput computing, it is still a tedious and time-
consuming task to determine the tertiary structure of RNA. In past studies, the authors have developed a number of 
computational algorithms to predict structure models of ncRNA genes [7]. Primary structure of RNA is a sequence-
specific process that determines some functional properties, like mature miRNA and siRNA molecules base pair 
to their targets [8]. Modification in the primary, secondary structure and expression levels of lncRNAs, as well as 
their cognate RNA-binding proteins, can cause diseases ranging from neurodegeneration to cancers [9-13]. That 
may question the methods based on high-throughput sequencing, especially for larger structured RNAs with long-
range tertiary interactions. Therefore, deriving the tertiary structure in a hierarchic way from the predicted secondary 
structure is not straightforward [14]. RNA tertiary structure can be model in 2 main ways [15,16]. 

Since the ncRNAs are completely described the biological process in the operation of the cell for the formation of 
tertiary structures [17]. Those tertiary structures of ncRNA genes are enabled to interact with each other to produce 
proteins [18]. The authors utilized a simple folding technique to detect a transition from secondary to tertiary structure 
[19]. Instead of structure, the authors have also described another category of ncRNAs that is long non-coding RNA 
classes [20]. All those classes of ncRNAs are described in Figure 2. In fact, many kinds of ncRNA genes are used to 
develop non-protein coding that will ultimately generate disease in the cell [21-23]. 
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Figure 2 The branch structure of genomic variations in microRNAs 
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It is cleared from Figure 1 that there are many classes based on functional transcripts of ncRNAs in case of humans. 
All the classes are described that are difficult to cover in this review article [24]. However, the lncRNAs, miRNAs 
are mostly included in this study. The literature review suggested that there is also long non-coding RNA (lncRNA) 
class instead of just the ncRNAs annotation [25]. In practice, it was noticed by medical expert that the human ncRNAs 
comprise 9882 small RNAs according to the current comprehensive annotation of genes [26-29]. Accordingly, the 
lncRNA genes were also included in this review article to find their functional annotation in the development 
of the cell.
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This review article focuses on the computational algorithms for predicting functional annotation of ncRNA including 
lncRNA class. In contrast to functional annotation of ncRNA genes, the authors have also developed some techniques 
to predict ncRNA structure. Those systems were not discussed in this paper such as Fold align, Pfold, Mfold, 
RNAfold, RNAshapes, RNAstructure, NAST, iFoldRNA, and 3dRNA [30-38]. These methods will be described in a 
future paper. In the coming section, state-of-the-art artificial intelligence techniques are briefly described to functional 
annotate the ncRNA genes [39-48].

Computational Intelligent Techniques

Functional annotation plays a vital role in identifying the genes from large sequences of ncRNAs. In recent years, the 
role of long ncRNAs (lncRNAs) has gained lots of interest that are not appeared to produce protein-coding [49]. Since 
the non-protein-coding can contain transcription noise so the experts need to identify the likely functional candidates. 
As a result, the functional annotation of ncRNAs or lncRNAs becomes an advanced research topic in the domain of 
next-generation sequencers (NGS) [50]. In regulating the gene expression and epigenetics, the lncRNAs have a crucial 
function such as develop many diseases. Therefore, many studies have been conducted to determine the function of 
lncRNAs [51]. For a typical computational method, the classification of ncRNAs depends heavily on known proteins 
by making it difficult to distinguish coding from non-coding transcripts. To overcome these challenges, there is a 
dire need to develop an advanced computational system but recent approaches have only used SVM, HMM, NN 
or statistical model to get 90% of accuracy for identification of protein-coding. The subsequent paragraphs briefly 
described these computational techniques for functional annotation of genes [52-76]. All these computational systems 
are presented in Table 1.

Table 1 State-of-the-art computational tools for functional annotation of non-coding RNAs

Reference Tools Features Computational Methods
[49] CM-HMM Faster annotation of ncRNAs 1HMM + 2CM 
[54] DREME to identify and classify the lncRNA genes 3SVM
[55] lncRScan-SVM Integrate several features to identify lncRNAs 3SVM
[56] DM-lncRNAs Deep mining algorithm to identify lncRNAs 4DMA
[58] PLEK To differentiate between lncRNAs from mRNAs k-mer scheme and 3SVM
[59] LncRNA-ID Random forest algorithm with multiple features 5RFA
[60] Ensembl to interpret genomic sequence Ensemble classifiers
[69] DECRES To identify cis-regularity regions 6DL-NN
[73] VEP To annotate genomic variant Ensemble classifiers

1: Hidden Markov model; 2: Covariance model; 3: Support vector machine; 4: Deep mining algorithm; 5: Random forest 
algorithm; 6: Deep learning neural network

In a study conducted by Zasha, the heuristics based hidden-Markov-model (HMM) filter is designed to search the 
covariance models (CMs) for finding new members of the ncRNA gene family in a large genome sequence. This 
tool is known as CM-HMM. The authors show that the HMM model is better than the covariance models (CMs) to 
find the function of ncRNAs. They compared this method with other 2 systems such as tRNAs and tRNAscan-SE. 
The authors achieved more significant results compared to these two on hundreds of ncRNA families. Whereas in, a 
miRDeepFinder tool was developed to functionally analyze the plant microRNAs (miRNAs) and their targets from 
small RNA datasets obtained from deep sequencing [53]. In this miRDeepFinder tool, the authors identified 13 novel 
miRNA candidates and 12 are experimentally validated. 

The authors used a support vector machine (SVM) to identify and classify the lncRNA genes [54]. They have tested 
this system on cDNA sequences. In that study, the authors developed a computational-based system to predict the 
function of lncRNAs to regulate the expression. They concluded that the ncRNA genes are an essential element 
of epigenetic gene regulation in plants, but fairly a minute. Similarly, the functional annotation of lncRNAs is 
identified using the SVM machine learning method [55]. The dataset of GENCODE annotations was used to test the 
proposed lncRScan-SVM system for classification of PCTs and LNCTs. The achieved show that the lncRScan-SVM 
is outperformed compared to state-of-the-art systems due to integrating of several features that are derived from gene 
structure, transcript sequence, and conservation steps.

Instead of using SVM or NN machine learning algorithms, the authors developed a deep mining algorithm to interpret 
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lncRNA functionality [56]. In that study, the authors used this deep mining algorithm to classify lncRNAs known as 
DM-lncRNAs into 4 different groups. Whereas in, the authors presented a novel method to the functional annotation 
of ncRNAs by using some features and SVM machine learning algorithm [57]. After applying the ten-fold cross-
validation test, the coding RNAs from ncRNAs are distinguished at about 97% specificity and 98% sensitivity.

An alignment-free predictor tool was developed known as PLEK based on k-mer scheme and support vector machine 
(SVM) computational methods [58]. This tool was developed to differentiate between lncRNAs from mRNAs in 
the absence of genomic sequence or annotations. Random forest algorithm with multiple features was developed to 
annotate long non-coding RNAs (lncRNAs) for coding of transcript sequences [59]. This tool is known as lncRNA-ID 
for annotating the long coding RNAs. In that tool, the authors showed that it can compete with existing state-of-the-
art methods for identification of lncRNAs. The authors have uploaded the data and programs to the GitHub website. 
Ensemble classifiers approach was developed to interpret the genomic sequence that provided the latest annotations 
methods [60]. They updated annotation models in terms of the gene, comparative genomics, regulatory regions and 
variations on the new human assembly, GRCh38. A TANRIC (The Atlas of Noncoding RNAs in Cancer) web-based 
software approach is developed to explore lncRNAs [61]. In explore of profile expression of lncRNAs, the 20 cancer 
types are characterized that includes TCGA sequences. It has provided the capability for researchers to analyze 
lncRNAs of interests (annotate lncRNAs). By using this TRANIC web-interface, the researchers can identify a lot of 
lncRNAs with biomedical significance results. This software is provided strong correlations to therapeutic targets and 
biomarkers with drug sensitivity. 

They used the hypergeometric test to functionally annotate lncRNAs with significantly co-expressed with protein-
coding genes [62]. From 12 different databases, the functional terms from Gene Ontology and 4,380 human biological 
pathways are collected to develop a web-based interface named as lncRNA2Function. This lncRNA2Function allows 
the researchers to browse lncRNAs and to final functional specific terms. Also, the model of KATZ that measures 
the lncRNA-Disease Association prediction (KATZLDA) was developed [63]. KATZLDA obtained a reliable area 
under the curve AUCs of 7175, significantly improving previous classical methods. In a study, a machine learning 
algorithm known as PredcircRNA was developed to discover circular RNA (circular RNA) is an important type of 
lncRNAs [64]. The PredcircRNA was used to differentiate between circular RNA and lncRNAs using multiple kernel 
techniques. In this approach, different features are extracted and then multiple kernel approach was used to fuse 
those heterogeneous features. The performance of PredcircRNA was measured by using 5-fold cross-validation test 
and accuracy of 0.778, the sensitivity of 0.781, specificity of 0.770, precision of 0.784 were obtained to differentiate 
between these two RNAs. This PredcircRNA tool is available for download.

A computational intelligence system was developed to predict diseases associated with lncRNAs [65]. In this 
predictor, they combined lncRNA expression profiles, gene expression profiles, and human disease-associated gene 
data. The comparison of non-tissue-specific linc RNAs results shows that the area under curve AUC of our algorithm 
is 0.7645, and the prediction accuracy is about 89%. Effective computation methods were proposed to differentiate 
between coding and long non-coding RNAs [66]. In the first step, they implemented a predictor to recognize lncRNAs 
by fusion of many features and then use the deep learning algorithm to distinguish between these two categories. 
They achieved 97.1% of prediction accuracy that is higher than other state-of-the-art predictors. The lncRNA-MFDL 
software package is freely available for academic users. A model of HyperGeometric distribution for lncRNAs was 
established to predict 19 associations for breast cancer, lung cancer, and colorectal cancer [67,68]. They utilized the 
area under the receiver operating curves (AUC) with leave-one-out cross-validation test and AUC of 0.7621 was 
obtained.

The authors utilized supervised deep learning computational algorithm for identification of active cis-regularity 
regions in the human genome [69]. In that research study, they suggested that this computational algorithm has 
significant advances in the knowledge of genomic locations of cis-regularity regions. They performed many functional 
annotation experiments on 300,000 candidates based on DECRES (Deep learning for identifying Cis-Regulatory 
Elements) computational method. In that paper, they obtained a higher value of sensitivity and specificity compared 
to other techniques.

TopHat and Cufflinks software were used to annotate lncRNAs [70]. However, in a study, the authors utilized an 
effective method called BiCliques Merging (BCM) to annotate miRNAs based on bicliques merging technique [71]. 
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In that research, the maximal bicliques detected in the network are statistically evaluated and filtered and afterward, 
a greedy-based strategy was used to iteratively merge the remaining bicliques. After analyzing experiments, they 
showed that the proposed technique is functionally enriched compared to state-of-the-art annotation techniques by 
using TCGA sequence from 2 cancer datasets. They have also constructed a weighted miRNA regularity network for 
module discovery on Breast cancer.

Even after having intensive research has been focused on ncRNAs recently. The authors reported that the properties 
characteristics and signals of ncRNAs are quiet unknown [72]. As a result, many authors are trying to developed 
advanced computational techniques to predict the likely functional influence of ncRNA genes in the cell. The 
annotation of genomic variants approach was developed in by using the Ensembl variant effect predictor (VEP) 
in ncRNAs regions. The VEP is open source and free to use [73]. In computational intelligence, an algorithm was 
developed to identify pseudogenes in lncRNAs regulation in the human transcriptome [74]. In that algorithm, they 
identified all lncRNAs transcripts that overlap genomic spans. The experiments were performed on a retrieve sequence 
from the UCSC Genome Database using the UCSC Table Browser. 

Likewise, an Improved LNCRNA functional similarity calculation model (ILNCSIM) was developed based on the 
hypothesis that lncRNAs with similar biological functions tend to be involved in similar diseases [75]. The authors 
presented a hierarchical structure approach and basic information to derive disease-directed acyclic graph. The 
combination approach is developed in by detection of lncRNA and known miRNA to functionally annotate a large 
number of lncRNAs [76]. In that review article, the new characteristic features are derived and technical issues posed 
by the diversity of lncRANs were also discussed that can be used in different bioinformatics applications. The authors 
suggested that the limitations of current lncRNAs-related methods that can be used to assist in the development of 
new computational tools. In Table 2, all the online web resources are presented for major computational methods 
developed in the past systems to functionally annotate ncRNAs and lncRNAs.

Table 2 Comparisons table of major State-of-the-art computational tools for functional annotation of non-coding RNAs

Reference Name 1URL
[49] CM-HMM http://bio.cs.washington.edu/software
[54] DREME http://meme-suite.org/
[55] lncRScan-SVM http://sourceforge.net/projects/lncrscansvm/?source=directory
[56] DM-lncRNAs Unknown
[58] PLEK https://sourceforge.net/projects/plek/files/
[59] LncRNA-ID https://github.com/zhangy72/LncRNA-ID
[60] Ensembl https://github.com/Ensembl
[62] lncRNA2Function http://mlg.hit.edu.cn/lncrna2function
[65] lincRNAs http://asdcd.amss.ac.cn/MingXiLiu/lncRNA-disease.html
[69] DECRES https://github.com/yifeng-li/DECRES
[70] TopHat-lncRNAs http://www.animalgenome.org/repository/pub/MTSU2015.1014/
[73] VEP http://www.ensembl.org/vep

1 Universal resource locator

Databases

To test and compare the functional annotation of RNA genes, the authors have developed some online databases. An 
example of online databases is presented in Table 3. As shown in this table, there are few online databases available 
to test the proposed computational system. However, in many examples of RNA genes, the authors have focused 
more on lncRNAs data sets. Therefore, Table 3 is focused on functional annotation of lncRNA genes research. To do 
research in this field, the databases played important roles and delivered specific annotations.

Table 3 Online databases for functional annotation

Reference Database Name 1URL
[77] NONCODE v 4.0 http://www.bioinfo.org/noncode/
[78] lncRNAdb http://www.lncrnadb.org/
[79] LNCipedia http://www.lncipedia.org
[80] lncRNome http://genome.igib.res.in/lncRNome/
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[81] fRNAdb http://www.ncrna.org/frnadb
[82] lncRNAtor http://lncrnator.ewha.ac.kr/
[83] lncRNAMap http://lncrnamap.mbc.nctu.edu.tw/php/
[84] PLncDB http://chualab.rockefeller.edu/gbrowse2/homepage.html

1 Universal resource locator

Challenges for Functional Annotations

Computational intelligent techniques have many limitations that developed in the past systems for functional 
annotation of non-coding RNAs (ncRNAs). It was mentioned before that the ncRNAs genes are a very important 
function for the operation of the cell. Therefore, the authors focused more on developing methodological techniques 
for understanding the different functions of ncRNAs. The authors applied many computational intelligent models to 
determine functional divergence and resemblance ncRNAs genes in the cell along with limited data sources. There 
are many varieties of ncRNAs such as micro RNAs or long non-coding RNAs. Therefore to get accurate accuracy for 
determining the functions of ncRNAs is still a challenging task for computational intelligent methods. Compared to 
the functional annotation of ncRNAs, the authors have also developed structure prediction algorithms that obtained 
higher accuracy. Currently, many authors proposed computational methods to analyze the structural and functional 
annotation of ncRNAs [30-48,55-74]. 

As a matter of fact, the structure prediction of ncRNAs or lncRNAs genes is still having an accuracy that is not up-
to-the-mark. The author’s utilized conventional machine learning algorithms instead of the advanced computational 
deep learning algorithm. The advantage of using the deep-neural network (DNN) is that these models can be trained 
on a large sequence data and the prediction response is in a very limited amount of time compared to convolutional 
machine learning approaches such as SVM, AdaBoost or NN classifiers. Unfortunately, at present, we find only one 
effective methodological approach that can predict functional of ncRNAs or long ncRNAs genes through advanced 
machine learning approaches such as deep learning algorithm [69]. 

To highlight these issues, let us consider a study in which the authors developed RNAz system to predict the structure 
of ncRNAs but it requires high computational cost due to support vector machine (SVM) classifiers [28]. Therefore, 
it is unsuitable for the next-generation sequence (NGS) or where there is a requirement for big data. Also, the authors 
developed an RNA-sample system to predict secondary structure but this system required high computational 
complexity [36]. This information is briefly described in Table 3 about structure prediction. From this table, it is noticed 
that the high-throughput sequences are not possible to extract from the large-sequence ncRNA genes. Therefore, these 
approaches must require deep-learning algorithms to effectively detect large sequence structures without focusing on 
domain expert knowledge about machine learning or data mining algorithms.

CONCLUSION

Advances in bioinformatics have made enormous progress towards the development of computational techniques 
for the structure and functions of ncRNA or lncRNA. In this review article, the advanced computational methods 
are focused to annotate the function of ncRNAs. This paper described the computational methods to predict the 
structure or to functionally annotate the ncRNAs genes. To increase the accuracy of functional annotation, there is 
a dire need for domain expert knowledge. In fact, the state-of-the-art computational techniques that have been used 
in the past required for pre-processing of raw input data, feature selection and to fine-tune parameters for getting 
high accuracy. However, the authors put many efforts to do pre- or post-processing on data instead of developing 
effective computational intelligent techniques. It was noticed that the deep learning algorithms are classifying the 
data without doing pre- or post-processing steps. The methods were developed using deep learning algorithms to 
get higher accuracy for data classification. In practice, the deep learning algorithms have outperformed compared to 
conventional machine learning algorithms for functional annotation of ncRNAs but still, lack of expert knowledge 
is required to define multilayer architecture. As reported in the past studies, the techniques developed using deep 
learning algorithm must be further investigated in terms of performance.
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