Detection of *Cyclospora cayetanensis* Infections among Diarrheal Children Attending Pediatric Teaching Hospital in Sulaimani City

1Fatimah Mohammed Ali, 2Shahnaz Abdul Kader Ali and 3Sham Jamil Abdullah

1M.S.c. Microbiology-parasitology, Department of Nursing, Sulaimani Polytechnic University, Technical Institute of Sulaimani, Sulaimani – Iraq

2Ph.D. Parasitology, Department of Microbiology, School of Medicine, University of Sulaimani

3M.S.c. Microbiology-parasitology, Department of Microbiology, School of Medicine, University of Sulaimani

Corresponding Email: fatema1972@yahoo.com

ABSTRACT

The present study aimed to investigate the Cyclospora infection among children attended Pediatric Teaching Hospital in Sulaimani City and to determine its prevalence among other intestinal parasites. The study started from the 1st of Jun. to the 1st of Dec. 2014. Three hundred stool samples were collected from children aged between 6 months to 14 years old from both genders who attended the hospital. Data was collected using a questionnaire form including information about gender, age, location.....etc. Stool samples were examined by direct wet mount and modified acid-fast stain as a standard method. Using Modified Ziehl-Neelsen stain method revealed that 12 (4.0%) was positive for Cyclospora oocysts, with no significant difference in the total rate of infection. The infection rate in males was (3.9%) while in females was (4.1%), with no significant difference between genders and the rate among children in urban area was (4.1%) while in rural areas was (3.3%). According to the age group children from (6 months - 2 years) of age showed the highest (5.6%) prevalence rate, while the lowest rate of infection (3.9%) was recorded among children aged between (3-5 years), with no significant difference between the rate of infection and the age groups. Also by applying direct wet mount method the rate of infection was (3.0%), which became in the second level of infection after *Entamoeba histolytica* (10.3%). Cyclosporias is founded as an endemic case in Pediatric Teaching Hospital in Sulaimani City for the first time, were modified acid-fast stain was the most reliable technique for its diagnosis, and must be considered as one of the most important cause of diarrhea among children.

Keywords: Stool samples, Children, *Cyclospora* oocysts, Sulaimani, Iraq.

INTRODUCTION

Cyclosporais obligate intracellular apicomplexan protozoan parasites that infect the mucosal epithelium of the small intestine or bile duct of a variety of hosts, mostly vertebrates[1].

In recent years, *Cyclospora cayetanensis* has consider as an important human pathogen that causes diarrhea in both immuno-compromised and immunocompetent hosts. In the later, diarrhea is usually prolonged, but self-limited, while in immuno-compromised, it may be prolonged and severe [2]. It differs significantly from all other *Cyclospora* species not only in its host but also in its oocyst stage, which is much smaller and spherical rather than oblong [3, 4].
The first published report of *C. cayetanensis* in humans was by Richard Ashford at 1979 [5]. It was described under the genus *Cyclospora* [6]. Details about this coccidian, complete morphologic description and its taxonomic status on the basis of in-vitro sporulation, mechanical excystation and transmission electron microscopy [3].

The route of transmission is by ingestion of contaminated water and food products with sporulated oocysts, especially vegetables that are the most implicated source for the spread of cyclosporiasis [2]. It is unlikely transmitted directly between individuals. The infection dose is presumed to be low [7].

In recent years, several studies have shown that *C. cayetanensis* is distributed worldwide [8, 9]; its prevalence is considerably higher in developing countries than in Europe and North America. It has caused a number of sporadic cases and epidemic outbreaks diarrheal illness [10, 11]. Outbreaks have been linked to contaminated water and various types of fresh products. Females and males are equally susceptible to *Cyclospora* infection; it can cause illness that varies significantly with age and condition of the host.

MATERIALS AND METHODS

The present study was carried out from 1st Jun. 2014 to 1st Dec. 2014. Three hundred stool samples were collected from children aged between 6 months to 14 years old who attending the Pediatric Teaching Hospital. Stool samples were obtained randomly from in-patients and out-patients, excluding of diarrheal and abdominal pain cases.

The stool samples were collected in a dry, clean screw capped plastic container. Patient’s name, number and date of collection were written on the container. Questionnaire form was prepared to each patient. The specimens were transported to the laboratory as soon as possible.

Stool examination: Each stool specimen was examined microscopically by:

(a) **Direct smear examination (saline and iodine smear).**

The color, consistency, and presence of blood, mucus, ova and the parasites were recorded. Stool specimen was then inspected by using direct wet smear technique using saline and iodine solution for the presence of oocysts of *Cyclospora* the slides then examined under (40X) power [12].

(b) **Staining method using modified Ziehl–Neelsen (MZN).**

A smear of stool specimen was prepared by an applicator stick, and spread by rolling the stick over the middle part of the slide. Let to dry then fixed with absolute methanol, by adding few drops (2-3 drops) and let to dry again then stained with modified cold Ziehl-Neelse [13]. The slides then examined by using the oil immersion lens (100X).

Cyclospora oocysts were identified by morphological criteria, and also other pathogenic parasites found in the samples.

Data analysis

Applying SPSS (Version16) for Statistical analysis. Descriptive statistics (numbers and percentage) were calculated for all variables, as well as analytical statistics was performed to observe the relations between the variables, and variables were calculated by using the Chi-square test.

RESULTS

From the results out of 300 stool specimens examined, 12 (4.0%) was positive with oocysts of *Cyclospora* by using MZN staining (Figure 1).
The prevalence rate of *Cyclospora* infection in males was lower (3.9%) than females (4.1%), with no significant difference in the total rate of infection between both gender (Table 1). Also there was no significant difference between the rate of infection among children in urban (4.1%) and rural (3.3%) areas by MZN method (Table 2).

From the relationship between *Cyclospora* infection and age groups it was found that children between (6 months-2 years) of age recorded the highest (5.6%) rate while the lowest rate of infection (3.9%) was in (3-5 years) age group with no significant difference between the rate of infections and age groups, alsono rate of infections was recorded among (6-8 years), (9-11 years) and (12-14 years) age groups (Table 3).

Modified cold Ziehl-Neelsen stain showed that the oocysts were about 8µm, spherical in shape, stained with pink-red color against green (blue) background color. (Figure 2 A&B). The result of using direct wet mount method in examination recorded a rate of (3.0%) of *Cyclospora* infection that came in the second level of infection after *Entamoeba histolytica*10.3% (Table 4). The result of using these two microscopic methods indicated that the higher rate of infection was 4.0% by modified cold Ziehl-Neelsen stain then direct wet mount method with a prevalence rate of 3.0%, with no significant difference between both methods (Table 5).

Table (1): The number of examined sample and the rate of infection with *Cyclospora* according to the gender of children in Pediatric Teaching Hospital (n= 300).

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Exam. samples</th>
<th>The Result of ZN test</th>
<th>The Result of ZN test</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Negative</td>
<td>No.</td>
<td>%</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td>Male</td>
<td>153</td>
<td>147</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Female</td>
<td>147</td>
<td>141</td>
</tr>
<tr>
<td>Total</td>
<td>300</td>
<td>288</td>
<td>96</td>
<td>12</td>
</tr>
</tbody>
</table>

Table (2): The number of examined sample and the rate of infection with *Cyclospora* according to the residency of children in Pediatric Teaching Hospital (n= 300)

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Exam. samples</th>
<th>The Result of ZN test</th>
<th>The Result of ZN test</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Negative</td>
<td>No.</td>
<td>%</td>
</tr>
<tr>
<td>Place</td>
<td></td>
<td>Urban</td>
<td>270</td>
<td>259</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rural</td>
<td>30</td>
<td>29</td>
</tr>
<tr>
<td>Total</td>
<td>300</td>
<td>288</td>
<td>96</td>
<td>12</td>
</tr>
</tbody>
</table>
Table (3): The relationship between *Cyclospora* infection and the age of children

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Exam. Samples</th>
<th>The Result of ZN test</th>
<th>The Result of ZN test</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No.</td>
<td>No.</td>
<td>%</td>
<td>No.</td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5-2</td>
<td>142</td>
<td>134</td>
<td>94.4</td>
<td>8</td>
</tr>
<tr>
<td>3 – 5</td>
<td>102</td>
<td>98</td>
<td>96.1</td>
<td>4</td>
</tr>
<tr>
<td>6 – 8</td>
<td>44</td>
<td>44</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>9 – 11</td>
<td>08</td>
<td>08</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>12 – 14</td>
<td>04</td>
<td>04</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>300</td>
<td>288</td>
<td>96</td>
<td>12</td>
</tr>
</tbody>
</table>

Figure (2): Oocyst of *Cyclospora* by Modified cold Ziehl-Neelsen stain with magnification 1000X

Table (4): Type, species and the rate of infection of parasites (by direct wet mount) in children in Pediatric Teaching Hospital in Sulaimani

<table>
<thead>
<tr>
<th>No. and Type of Parasites</th>
<th>Species of Parasites</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protozoa (Single infection)</td>
<td>Entamoeba histolytica</td>
<td>31 10.3</td>
</tr>
<tr>
<td></td>
<td>Cyclospora</td>
<td>9 3.0</td>
</tr>
<tr>
<td></td>
<td>Cryptosporidium</td>
<td>5 1.7</td>
</tr>
<tr>
<td></td>
<td>Giardia lamblia</td>
<td>2 0.7</td>
</tr>
<tr>
<td></td>
<td>Entamoeba coli</td>
<td>1 0.3</td>
</tr>
<tr>
<td></td>
<td>Blastocystis hominis</td>
<td>2 0.7</td>
</tr>
<tr>
<td>Protozoa (double infection)</td>
<td>E.histolytica & Blastocystis hominis</td>
<td>2 0.7</td>
</tr>
<tr>
<td>Total Exam. Samples (300)</td>
<td></td>
<td>52 17.4</td>
</tr>
</tbody>
</table>

Table (5): Comparison between two methods for diagnosis of *Cyclospora* infection in Pediatric Teaching Hospital

<table>
<thead>
<tr>
<th>The tests</th>
<th>Exam. samples</th>
<th>The Result of the tests</th>
<th>The Result the tests</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No.</td>
<td>No.</td>
<td>%</td>
<td>No.</td>
</tr>
<tr>
<td>Ziehl –Neelsen stain</td>
<td>300</td>
<td>288</td>
<td>96</td>
<td>12</td>
</tr>
<tr>
<td>Direct wet mount</td>
<td>300</td>
<td>291</td>
<td>97</td>
<td>9</td>
</tr>
</tbody>
</table>

DISCUSSION

The coccidian parasites are important pathogens. Many physicians remain unaware of their clinical importance[14]. *Cyclospora* has now been identified worldwide in the feces of both immunocompetent and immunocompromised patients with diarrhoea [15-19]. Several studies have documented the fact that *C. cayetanensis* is a diarrhoea causing agent[3, 4, 20, 10, 21, 22].
The present study findings revealed that *Cyclospora* infection was common among diarrheic children attending the Pediatric Teaching Hospital in Sulimani City, and this may be due to contaminated food and water with the oocysts of this parasite. This result was in accordance with previous studies done in Egypt [23-26] in Jordan and [27-29] in Guatemala. From reviewing the results for *Cyclospora* it was found that the lower prevalence rates were reported in Tanzania [30], [31] in Thailand, [32] in Cuba, in India [33-35] in Mexico, [36] in China and by [37] in Albania. While higher prevalence rates were reported in Venezuela [38-39] in Egypt this may be because of many factors such as number of patient's samples in different screening studies, differences in the geographical distribution, ages of patients, also variation in diagnostic methods used, socioeconomic conditions, immunological status, personal hygiene and the modifying of temperature between the seasons in different locations the studies.

The results also showed no significant difference between males (3.9%) and females (4.1%) infection with *Cyclospora*, although the rate of infection in females was relatively higher than the rate of males, this may be due to that both genders can be exposed to *Cyclospora* oocysts equally and both male and female have the same sensitivity to infection especially at the early stages of their lives. This result agrees with the results of [40] in Nepal, [36] in Anhui, China and [41] in Egypt, but the result disagree with results of [42] in Alexandria, Egypt and by [43] in Kathmandu, Nepal.

From the data observed that there was no significant difference between urban (4.1%) and rural (3.3%) infection with *Cyclospora*, where the rate of infection in urban area was relatively higher than the rural area this may be due to the use of the same sources of drinking water by panties in urban area, though tap water was implicated as the most likely source of contamination, lack of adequate sanitation, and the presence of animals in the household are associated with increased risk of *Cyclospora* infections [27, 44]. This result agreed with the results of [45, 46], but it was disagree with other studies carried out by [41] in Egypt and [47] in China which most of the infected children were living in rural areas, this may be because of personal hygiene and living environmental conditions. In rural areas, simple toilets, deficiency of sanitary facilities and diffusing feces contamination were commonly recorded, and most people were unaware of health knowledge and good hygiene habits [42].

Although all age groups can infect this disease, the most vulnerable age group seems to be less than 1 year to 15 years of children [48, 19, 49, 50]. From the data children of (6 month to 2 years) age group showed the highest (5.6%) rate of infection while the lowest rate of infection (3.9%) was reported in children of (3-5 years) age groups with no infection rate among (6-8 years), (9-11 years) and (12-14 years) age groups and there was no significant difference between the rate of infection and the age groups. This may be because of the development of partial immunity in elder age groups protect them from being infected with the coccidia also they are more aware of their personal hygiene, but not from re-infection [47]. This result agrees with the results of studies done by [3, 41, 42, 40, 27, 51, 2, 52, 53] suggesting either that protective immunity develops with repeated exposure to *cayetanensis* early in life or there may be differential exposure risk in older individuals.

The prevalence rate of *Cyclospora* was 3.5% in children aged 1.5 to 4 years old and 3.8% in children aged 5 to 9 years, according to surveillance studies [27]. Similar results were obtained from the case-control studies, where the highest prevalence was in children aged 1.5 to 9 years (11.6%) [54]. The prevalence rate among children > 11 years was 0%, suggesting either that protective immunity develops with repeated exposure to *cayetanensis* early in life or there may be differential exposure risk in older individuals [2, 51, 52].

From using the two methods it was clear that modified acid-fast stain was the only stain capable of detecting the coccidians in clinical specimens [55]. The data of comparing the two methods used in detection of *Cyclospora* showed that MZN method recorded the higher rate in detecting oocysts than direct wet mount, this may be due to the amount of stool specimen used and to the two stains that had been used in MZN that gave red and green (or blue) according to availability of the malachite green (or methylene blue) stain this gives chance to differentiate the parasite from the debris.

In the present study, the prevalence rate of *Cyclospora* became in the second level of infection after *E. histolytica* rate, and this showed the degree of importance of it among other intestinal parasite which causes diarrhea. This result agreed with [56] who reported that *E. histolytica* as the most prevalent protozoan pathogen in Lagos but disagree with [57] in which *Cryptosporidium* is the most prevalent protozoan pathogen and *Cyclospora* detected as a newer emerging diarrheal pathogen and its rate was higher than the rate of *E. histolytica*.

81
CONCLUSION

The results indicated that *Cyclospora* oocysts are endemic in Sulimani city and it is an important etiological agent of diarrhoea. However, it is the first study done here but the good result was obtained because it was done in dry hot season though all positive cases detected were recorded in June to August. More detailed and specific studies needed to provide more information about this causative agent of diarrhoea in this country.

Acknowledgments

The authors appreciate the help of Pediatric Teaching Hospital Laboratory in Sulimani City for their assistance in providing the stool samples from their patients, and the support of Microbiology department/ School of Medicine, thanks also to Dr. Abdullah Aldabash and Dr. Abdullah A. Hama who helped in doing the statistical analysis of the research.

REFERENCES

