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ABSTRACT

In regression analysis, an outlier is an observation for which the residual is large in magnitude compared to other 
observations in the data set. The detection of outliers and influential points is an important step of the regression 
analysis. Outlier detection methods have been used to detect and remove anomalous values from data. In this paper, 
we detect the presence of outliers in simple linear regression models for medical data set. Chatterjee and Hadi 
mentioned that the ordinary residuals are not appropriate for diagnostic purposes; a transformed version of them is 
preferable. First, we investigate the presence of outliers based on existing procedures of residuals and standardized 
residuals. Next, we have used the new approach of standardized scores for detecting outliers without the use of 
predicted values. The performance of the new approach was verified with the real-life data.
Keywords: Medical data, Outlier, Residual analysis, Regression and residual analysis

INTRODUCTION

Regression analysis is a statistical technique for analysing and modelling the relationship between dependent variable 
and one or more independent variables. This technique uses the mathematical equation to establish the relationship 
between variables. It is a predictive modelling technique used for forecasting and to find casual effect relationship 
between the variables. The applications of regression analysis were found in almost every field including physical and 
chemical sciences, engineering, economics, finance, pharmacology, life and biological sciences, social sciences, and 
other fields of study. In simple linear regression model, only one independent variable (x) is used to predict a single 
dependent variable (y). The scatter diagram is used to diagrammatically display the relationship between independent 
variable and dependent variable.

The equation of a straight line relating these two variables is given by Montgomery, et al. [1]. 

0 1β β= +y x                       (1)

where β0 is the intercept and β1 is the slope. 

The difference between the observed value of y and the fitted straight line is a statistical error ε. It is a random variable 
that accounts for the failure of the model to fit the data exactly. 

Hence the model is given by

0 1β β ε= + +y x                                                                                                                                                (2)

which is called a ‘simple linear regression model’. 

The important objective of regression analysis is to estimate the unknown parameters β0 and β1 in the regression 
model. There are several techniques are available for estimating the unknown parameters, here we use the ‘method 
of least squares’.  In the method of least squares, we will estimate β0 and β1 so that the sum of the squares of the 
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differences between the observations yi and the straight line is a minimum. The ordinary least squares (OLS) method 
has been used to fit the model and to estimate the parameter values. There are several assumptions that must be 
fulfilled for the OLS model to be valid. When the regression model does not satisfy the fundamental assumptions of 
the model, predictions and estimations based on the model, may be biased [2].

The least square estimator of the intercept β0 is:

0 1
ˆ ˆβ β= −y x                                                                                                                                                      (3)

The least square estimators of the slope β1 is:
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Then the fitted simple linear regression model is given by:

0 1
ˆ ˆˆ β β= +y x                       (5)

which gives a point estimate of the mean of y for a particular x.

The difference between the observed value yi and the corresponding fitted value is called residual. Mathematically the 
ith residual is given by Bipin et al. [3].

0 1
ˆ ˆˆ ( ), 1, 2,...,β β= − = − + =i i i i ie y y y x i n                                                                                        (6)

Residuals play an important role in investigating the adequacy of the fitted regression model and in detecting departures 
from the underlying assumptions.

After obtaining the least squares fit, we should check for the following:

• How well does this equation fit the data?

• Is the model likely to be useful as a predictor?

• Are any of the basic assumptions (such as constant variance and uncorrelated errors) violated?

All of these issues must be investigated before the model is finally adopted for use. Outliers/bad values can seriously 
disturb the least-squares fit. An observation falls far away from the line implied by the rest of the data. If this point is 
really an outlier, then the estimate of the intercept may be incorrect. On the other hand, the data point may not be a 
bad value and may be a highly useful piece of evidence concerning the process under investigation. 

The major assumptions of the regression analysis are as follows: [4].

i. The relationship between the response y and the regressor’s x is linear, at least approximately.

ii. The error term ε has zero mean.

iii. The error term ε has constant variance σ2.

iv. The errors are uncorrelated.

v. The errors are normally distributed.

Assumptions (iv) and (v) implies that the errors are independent random variables. Assumption (v) is required for 
hypothesis testing and interval estimation.

The appropriateness of the model is studied and the quality of the fit is ascertained by model adequacy checking t or 
F-statistics or R2. 
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Outliers are observations that appear inconsistent with the remainder of the data set [5]. Outliers may be mistakes, 
or else accurate but unexpected observations which could shed new light on the phenomenon under study [6]. In this 
study, we have concentrated on outlier detection methods on linear regression model. Specifically, we are concerned 
with observations that differ from the regression plane defined by the bulk of the data. It is important to identify these 
types of outliers in regression modelling because the observations, when undetected, can lead to erroneous parameter 
estimates and inferences from the model [7]. Identifying outliers in the real-world database is important for improving 
the quality of original data and for reducing the impact of outliers [8]. The standard outlier detection procedures are 
based on residuals, which require the predicted value. Hence, we have used a new approach without using residuals. 
The performance of the new approach was verified by using the real-life data set, based on medical data pertaining 
to the age and systolic blood pressure (mm Hg) of 30 people of different ages, was retrieved from the web site of 
Florida State University [9].  The increase in blood pressure with age is mostly associated with structural changes 
in the arteries and especially with large artery stiffness, which is associated with increased cardiovascular risk [10]. 
On average, systolic blood pressure increases with age, while diastolic blood pressure increases to age 50 and then 
decrease [2].

MATERIALS AND METHODS

Methods of outlier detection in regression

There are many methods already exists for the detection of outliers in linear regression. They may be classified into 
two groups, namely graphical and analytical methods [11,12].

Outliers were detected based on the following methods: 

i. Residual analyses using standardized residuals, studentized residuals, jackknife residuals and predicted residuals; 

ii. Residuals plots such as the graph of predicted residuals, the Williams graph, and the Rankit Q-Q plot; 

iii. Scalar measures of influence statistics such as cook’s Di (measures the change in the estimates that outcome of 
deleting each observation), DFFITSi (measures the change in the predicted value of the dependent variable when the 
current value is omitted from the calculations), DFBETASj (i) (measures the influence on regression coefficients), 
Atkinson measures, and the Covariance ratio (measure of model performance).

Diagnostics based on residual analysis

1. Residuals: The residual is defined as:

ˆ , 1, 2,...,= − =i i ie y y i n                                                                                                                 (7)

where yi is an observation (dependent variable) and is the corresponding fitted value. Since a residual may be viewed 
as the deviation between the data and the fit, it is a measure of the variability in the dependent variable not explained 
by the regression model.

2. Standardised residuals (Normalised): Chatterjee and Hadi discuss that the normal residuals are not appropriate 
for diagnostic purposes; a transformed version of them would be better. Transformations of residuals such as 
standardized residuals, studentised residuals, jackknife residuals and predicted residuals, are often preferred over raw 
residuals because they overcome some of the limitations of raw residuals.

A logical scaling for the residuals is the standardised residuals and is given by Pimpan et al. [13].

, 1, 2,3,...,= =i
i

RES

e
d i n

MS
                                                                                                                   (8)

where MSRES is the mean square residual. The standardized residuals have mean zero and approximately unit 
variance. Consequently, large standardized residuals (di>3) potentially indicate an outlier.

3. Standardized scores: In this paper, a new approach for outlier detection was used to detect the values in linear 
regression models. This method is based on the individual standardized scores of dependent variable (y) and 
independent variable (x).
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RESULTS AND DISCUSSION

In this paper, the presence of outliers in blood pressure data based on residuals obtained from the fitted simple linear 
regression model have been studied and the relationship between age and SBP are investigated. Furthermore, we 
investigate the presence of outliers based on residuals and standardized residuals (Table 1). 

Figures 1 and 2 shows the scatter plot, which suggests that there is a moderate statistical relationship between age 
versus SBP, and the tentative assumption of the straight-line model 0 1y xβ β ε= + +  appears to be reasonable.
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Figure 1 Scatter plot for the data set with outlier

Using MS-Excel, the following regression model is fitted to the medical data pertaining to the systolic blood pressure 
was measured for 30 people of different ages (n=30). 

ˆ 98.71 0.97= +y x                                 (11)

with R2=43% (where y is the systolic blood pressure and x is the age). The residuals (Column 5) and the standard 
residuals (Column 6) have been shown in Table 1 were taken from the excel output. Table 1 displays the observed 
values yi, the fitted values, residuals, standard residuals and standardized xi and yi scores.

From Table 1, we can observe that the residual e2=75.65 is very large, the standardized residual d2=4.45 exceeded 
the cut-off value of >3, standardized yi score y2=3.43 exceeded the cut-off value of >3; therefore, the observations at 
the data point 2 is considered as outliers. Table 2 displays the descriptive statistics and Table 3 shows that the model 
fitting information and summary statistics for the dependent and independent variables. The outliers detected by the 
method of residuals and standard residuals are similar to those detected by standardized score approach.

Table 1 Tabulation of residuals, standard residuals and difference method (n=30)

S. no Age (xi) SBP (yi) Predicted SBP (ŷi) Residuals (ei) Standard Residuals (di) Standardized (xi) Standardized (yi)
(1) (2) (3) (4) (5) (6) (8) (9)
1 39 144 136.58 7.42 0.44 -0.4 0.06
2 47 220 144.35 75.65 4.45 0.12 3.43
3 45 138 142.4 -4.4 -0.26 -0.01 -0.2
4 47 145 144.35 0.65 0.04 0.12 0.11
5 65 162 161.82 0.18 0.01 1.3 0.86
6 46 142 143.37 -1.37 -0.08 0.06 -0.02
7 67 170 163.76 6.24 0.37 1.43 1.22
8 42 124 139.49 -15.49 -0.91 -0.2 -0.82
9 67 158 163.76 -5.76 -0.34 1.43 0.68
10 56 154 153.08 0.92 0.05 0.71 0.51
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11 64 162 160.85 1.15 0.07 1.23 0.86
12 56 150 153.08 -3.08 -0.18 0.71 0.33
13 59 140 156 -16 -0.94 0.91 -0.11
14 34 110 131.72 -21.72 -1.28 -0.73 -1.44
15 42 128 139.49 -11.49 -0.68 -0.2 -0.64
16 48 130 145.32 -15.32 -0.9 0.19 -0.56
17 45 135 142.4 -7.4 -0.44 -0.01 -0.33
18 17 114 115.22 -1.22 -0.07 -1.84 -1.26
19 20 116 118.13 -2.13 -0.13 -1.64 -1.18
20 19 124 117.16 6.84 0.4 -1.71 -0.82
21 36 136 133.67 2.33 0.14 -0.6 -0.29
22 50 142 147.26 -5.26 -0.31 0.32 -0.02
23 39 120 136.58 -16.58 -0.97 -0.4 -1
24 21 120 119.1 0.9 0.05 -1.58 -1
25 44 160 141.43 18.57 1.09 -0.07 0.77
26 53 158 150.17 7.83 0.46 0.51 0.68
27 63 144 159.88 -15.88 -0.93 1.17 0.06
28 29 130 126.87 3.13 0.18 -1.05 -0.56
29 25 125 122.99 2.01 0.12 -1.32 -0.78
30 69 175 165.7 9.3 0.55 1.56 1.44

Table 2 Descriptive statistics for the data set

Variables Age SBP
Mean 45.13 142.53

Median 45.5 141
Mode 39 144

Standard Deviation 15.29 22.58
Range 52 110

Minimum 17 110
Maximum 69 220

Count 30 30

Table 3 Summary output for the data set

Regression Statistics
Multiple R 0.66
R Square 0.43
Intercept 98.71

Slope (Age) 0.97

In regression analysis, the effect of the case can be studied by deleting the particular case from the data and analysing 
the rest of the population. Hence the results after deleting the 2nd observation with sample size (n=29) are shown below 
(Tables 4-6).
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Figure 2 Scatter plot for the data set without outlier
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Table 4 Tabulation of residuals, standard residuals and difference method (n=29)

S. no Age (xi) SBP (yi) Predicted SBP (ŷi) Residuals (ei) Standard Residuals (di) Standardized (xi) Standardized (yi)
(1) (2) (3) (4) (5) (6) (8) (9)
1 39 144 134.1 9.9 1.05 -2.83 -1.99
2 45 138 139.8 -1.8 -0.19 -2.91 -2.68
3 47 145 141.7 3.3 0.35 -2.87 -2.39
4 65 162 158.78 3.22 0.34 -2.87 -2.45
5 46 142 140.75 1.25 0.13 -2.89 -2.51
6 67 170 160.68 9.32 0.99 -2.83 -2.11
7 42 124 136.95 -12.95 -1.38 -2.99 -3.31
8 67 158 160.68 -2.68 -0.29 -2.91 -2.79
9 56 154 150.24 3.76 0.4 -2.87 -2.39

10 64 162 157.83 4.17 0.44 -2.87 -2.39
11 56 150 150.24 -0.24 -0.03 -2.9 -2.62
12 59 140 153.09 -13.09 -1.39 -2.99 -3.36
13 34 110 129.35 -19.35 -2.06 -3.03 -3.65
14 42 128 136.95 -8.95 -0.95 -2.96 -3.08
15 48 130 142.64 -12.64 -1.35 -2.98 -3.31
16 45 135 139.8 -4.8 -0.51 -2.93 -2.85
17 17 114 113.22 0.78 0.08 -2.89 -2.45
18 20 116 116.06 -0.06 -0.01 -2.9 -2.51
19 19 124 115.11 8.89 0.95 -2.84 -1.99
20 36 136 131.25 4.75 0.51 -2.86 -2.28
21 50 142 144.54 -2.54 -0.27 -2.91 -2.73
22 39 120 134.1 -14.1 -1.5 -2.99 -3.36
23 21 120 117.01 2.99 0.32 -2.88 -2.33
24 44 160 138.85 21.15 2.25 -2.75 -1.36
25 53 158 147.39 10.61 1.13 -2.82 -1.99
26 63 144 156.88 -12.88 -1.37 -2.98 -3.36
27 29 130 124.61 5.39 0.57 -2.86 -2.22
28 25 125 120.81 4.19 0.45 -2.87 -2.28
29 69 175 162.58 12.42 1.32 -2.81 -1.93

Table 5 Descriptive statistics for the data set

Variables Age SBP
Mean 45.07 139.86

Median 45 140
Mode 39 144

Standard Deviation 15.56 17.5
Range 52 65

Minimum 17 110
Maximum 69 175

Count 29 29

Table 6 Summary output for the data set

Regression Statistics
Multiple R 0.84
R Square 0.71
Intercept 97.08

Slope (Age) 0.95

CONCLUSION

In this paper, the detection of outliers in simple linear regression model have been discussed. A new approach for 
detecting outliers without the use of predicted values have been proposed. Which is quite useful in detecting outliers, 
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detects the outliers as same as the residual and standardized residual method. Hence, we suggest that in simple linear 
regression model, the difference method can be used for detecting outliers. Also by removing the influential point it 
is found that the model adequacy has been increased (from R2=0.43 to R2=0.71).
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