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ABSTRACT

The purpose of this study is to measure hemodynetmitges in prefrontal cortex caused by acute colthe right
hand using fNIRS to calibrate the amount of painseal by acute cold. fNIRS is a noninvasive funatibnain
imaging method which measures changes in concénratf HbO and HbR based on fNIRS principles. lis th
study, fNIRS signals of 21 adults (right-handedwid reported disease) were recorded in three stagke fNIRS
instrument used consisted of near and far chanoelsboth sides of the forehead. Near channels medsur
hemodynamic changes in the superficial tissue &edféar channels recorded changes in the cerebralexo By
analyzing the data, two features were found to fifiectve in quantifying of the pain. The first el was THb
gradient during stimulation. Statistical analysibosved that THb exhibited significant changes in cdhnnels
during the first stage of CPT compared to the HaselThe second feature is the difference betweednmum and
minimum changes in THb concentratiofT Hb); a significant relationship was observed betwgain stimulus and
ATHb in all channels. These results showed that 8NtRn be used as an effective tool to measure amy s
hemodynamic response caused by pain. Signals mioges the proposed algorithm includes: signalefiing,
optical signal conversion to oxy and deoxyhemoglalbianges, elimination and normalization of sigttehd. By
extracting proper features from oxy, deoxy and THbSVM and KNN classifiers, pain was classifiedhree
different levels. The results indicate that Classtifnulus can be differentiated from Class 2 ands€I3 and also
from their combination.
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INTRODUCTION

Pain is one of the primary causes making peophasio a doctor, hospital or clinic. However, mosttignts still
suffer from acute and chronic pain even after malimjical follow-ups. Several studies have been cmbed to
understand nature of pain and its perception bynlusing various devices such as fMRI and EEG. @frrelatively
new techniques used to study brain hemodynamicgesim response to different stimulations is theefional near
infrared spectroscopy (fNIRS). The purpose of #tigly is to evaluate brain hemodynamic changesspanse to
pain caused by acute cold in hand using fNIRS elrent decades, several functional neuroimaging adsthave
been used for pain processing in the central nergystem [1]. Initial clinical observations everosled a minor
role of cerebral cortex associated with pain pefoap Several neuroimaging studies reported involeet of
different cortical areas in pain processing [112]e pain-processing center in brain, a networkoofical areas and
subcortical areas form a pain matrix which receipesallel inputs from several nociceptive routes] as
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responsible for pain perception. Prefrontal coiekC), which is one of the cortical areas in than paatrix, is
responsible for processing pain concentration aemtgption. According to [3,4], activity of centrBFC varies
under conditions of chronic pain with severity b&tpain. Therefore, pain quantification in PFC lop4nvasive
methods can help patients who suffer from chroraing as well as comatose patients or infants. higy
evaluates PFC activity in response to painful slirwod differentiation of hemodynamic activity oF€ in response
to different levels of pain. The main purpose oiststudy is to develop different processing methéols
hemodynamic signals recorded by fNIRS in order xtraet useful and functional information and reduce
interference factors in the form of a quantificatecenario and classification of different leveigain. In fact, this
study examines potential use of fNIRS signals tecteand distinguish different levels of pain calibg acute cold
and differentiate the hemodynamic signals recofwethfrared spectroscopy in the anterior cortexapplying pain
caused by acute cold. In this regard, further teapstatistical features are extracted from hemadyic signals
which are correlated with level of paiNakamura et aJ5] evaluated the significant difference in ceeddvlood
circulation of patients with chronic and acute baeln using brain SPECT. They compared brain blkiozllation
in patients with chronic lower back pain (CLBP) kiatit structural disorder and acute lower back palBP) with
lumbar disc herniation (LDH). Functional imagingoeted an evidence of disorder in cerebral bloodutation in
certain areas of the brain at the time of back .p&iolper et al[6] measured physiological effects of mechanical
pain in the lumbar by fNIRS and capnography. Theslweated effects of mechanical pain stimulatiotuimbar on
oxygenation and hemodynamic changes in PFC usitigSNThey tested 13 healthy participants three gizied
each time using a pressure pain threshold (PPfhyé@e points of lumbar. The results showed thattteracteristics
extracted from pain stimulation included 1) reducedcentration of oxyhemoglobin, total hemoglobird dissue
oxygen saturation as well as the increased corat@rirof deoxyhemoglobin; 2) reduced PetCO2 resgoasd 3)
reduced dependence of fNIRS parameters and Pet€panse in the respiratory frequency (0.2-0.5 Rajro [7]
studied functional imaging of pain modulation, bébg and perception. Animal studies reported theréased
metabolism of an area of the brain over time amteimsed blood circulation in spinal cord and bdiiring acute
and chronic pains. In healthy volunteers, brairaarm@ssociated with pain hemodynamic changes wentified in
bilateral brain system including parietal, insulamgulate and frontal cortical areas. Certain grat of brain
activity may reflect hyperalgesic states and sohreric pain states. Frontal pain system is undabitory control
of inner opiates and can be affected by agonigptecs. Pain can cause changes in pain networtteibrain. In
addition, brain activity related to pain can beluahced by sleepiness, concentration, lack of aunagon or
placebo. These findings are a start point for spatporal dynamic detection of brain networks ielifeg of pain.
Yicel et a[8] addressed the features of brain hemodynansiporese in response to painful stimuli using fNIRS.
They used fNIRS to evaluate brain activity in resgto painful and painless electrical stimulattonll healthy
subjects. A signal change was observed in primamatosensory cortex in response to painful andlgssn
stimulation. Painful and painless stimuli can bpasated based on size and specifications of theakilf was also
observed that repeated painful stimuli lad to aapéation of the signal. In addition, signal cardisinguished from
skin response to pain which tends to sedate itthdbe results confirm the theory that fNIRS isiretrument for
pain measurement. As the first step in using fNER§hal is extraction of hemodynamic signal assedawith
functional brain response from noisy hemodynamijmais along with a variety of interference sign#iiés study
first develops available processing methods; themethod is suggested to eliminate physiologiaietences and
extract functional signal. The rest of the paperganized as follows. In continue, Section 2 dbssrthe proposed
algorithm. The results of the study are demondlrateéSection 3. Finally, Section 4 concludes thegra

MATERIALSAND METHODS

The purpose of this study is to use fNIRS as a fooimeasurement and quantification of pain le@te of the
essential processing on hemodynamic signals isiretion of physiological interference signals whistiongly
affect hemodynamic response of functional brainviigt Extraction of functional signals from fNIR&cords is
one of the most difficult problems with processiafy biological signals. The block diagram of the pweed
algorithm is shown in Figure 1.
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Figure 1: Theblock diagram of the proposed algorithm

Recording Protocol

PPT and pain tolerance test are used to find the ie which the pain is felt for the first time a®ll as maximum
pain which can be tolerated. These tests are vesfuli for understanding physiological and psychigalg
parameters of human body. Cold pressure test (&Pdne of the techniques which can well define pghmeshold
and pain tolerance. Some studies have used CPfivéomain purposes: stimulation of sympathetic aigtiand
pain. CPT influences cerebral hemodynamics and ohteerebral circulation in the middle cerebralesytby
sympathetic activation. Indirect sympathetic change capillary circulation and cutaneous microdiation are
evident in the area exposed to CPT. Many studieg shown that CPT is successful in evaluating itneat of
mental and physical disorders; moreover, CPT has hised in studies on heart diseases. There igtionship
between the pain reported by subjects during PRITpaim tolerance test and measurements of fNIRSe3t this
hypothesis, CPT was suggested to apply cold paim protocol is very important for recording paigrals; its
inefficiency leads to unrealistic results in datagessing. Recording protocol is as follows: twdRNsensors, as
previously described, are placed symmetrically othHeft and right sides of the forehead closeh® anterior
midline (AML) using medical tape (Figure 2). Rawmaaelated to the light intensity is collected wittsampling
frequency of 2HZ in a dim room (ambient temperatR8C) in order to minimize the backlight effeah. flact,
fNIRS measures relative changes in HbO and HbRerdrations considering basic conditions; therefbeeklight
effect is eliminated in the calculations. Subjestye asked to sit comfortably on a chair back ® ¢kaminer in
order to minimize distractions.

Photodetector

Figure 2: location of fNIRS sensors

Each test involved immersing right hand up to thisstwn circulating tepid water (23°C) for a periofi2 minutes,
to record resting position and provide temperaadgistment. Then, subjects (21 normal adults) vesieed to
immerse their right hands into a cold water (0°@)45 seconds. The process was periodically regehtee times
(Figure 3). Both water containers are equipped witmmercial aquarium pumps for water circulatiommioimize
heat accumulation around the immersed hand. Icerveantainer has a separate chamber for ice tal aliogct
contact with hand. The subject is formally informelen to shift from tepid water to ice water andeviversa. At
the end of each CPT and after immersing hand iepidtwater, the subjects are asked to report marirpain
which they felt during CPT on a scale from 0 to(d4ndard), where 0 is no pain and 10 is the waast (Figure 4).
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Figure 3: the subject undergoing CPT

g 2
= =
k=] 8 l Tepid Water 1

i)
T |

Tepid Water 1 1 Tepid Water 1
I

i (S T | I | ] | 1 I By o o
. I j ] [ T [ I ] ™ Time (s)
o 60 120 180 240 300 360 420 480 540 600 660

30 150 195 315 360 480 525 645

Figure4: pain protocol

Formsfollowing CPT
After performing the above mentioned protocol fibrsabjects and recording data, the subjects hakedto fill a

guestionnaire about the level of the pain they ggpeed. This form is a standard for measuring .peire method
used in this form is to use emoticons represemntiffgrent facial expressions. In this regard, Nadiblnitiative on
Pain Control™ (NIPC™) has provided diagnostic imstents to help measuring intensity and quality ainp
experienced by patients. The most popular emotiesasknown as Wong-Baker, which is explained beldhe

Wong-Baker emoticons are shown in Figure 5.

F i - ~— ; ;
G@ — oo fp\ /u\ C P
U — e — i / Q

No Hurt Hurts Little  Hurts Little  Hurts Even Hurts Hurts Worst
Bit More More Whole Lot

>

Figure5: the questionnairerelated to the subject after CPT; Wong-Baker emoticonsfor pain

The subjects were informed that happy emoticon siearpain and sad emoticon means feeling pain. iEom0 is
very happy, because it feels no pain; emoticone€lsfpain a little bit; emoticon 2 feels the paititde more;
emoticon 3 feels the pain even more; emoticon 4 fdee pain a whole lot and emoticon 5 feels thestvpain
without crying. The subjects were asked to choaseemoticon which best represents their feeling. theo
common method is a numerical scale used to expmsity of pain; in this scale, zero stands fopam and 10

stands for worst possible pain [9].

1 1 1 1 L 1 3 [l 1
I ) T 1 I 1 1 I T T 1
0 1 2 3 4 5 6 7 8 9 10
No Moderate ‘Worst
pain pain possible
pain

Figure6: pain scale
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RESULTS
fNIRS Signal Preprocessing

The block diagram of the signal preprocessing stépbe proposed algorithm is shown in Figure 7.s&en, it
comprises four steps.

= EPERE

Figure 7: Theblock diagram of signal preprocessing steps

Conversion of Light I ntensity Signal into Oxy and Deoxy Changes
Light intensity signal recorded from Channel 3atated to PFC right hemisphere. The first stepfocessing this
signal is converting it to HbR and HbO changesheyrhodified Beer-Lambert laws.

Signal Filtering, Trend Elimination and Signal Normalization

fNIRS signals are influenced by noise sources sagphysical and physiological noises or motor a@et§ which
influence measurement of hemodynamic response lstietl by functional brain activity. The noise inb&s
hemodynamic fluctuations caused by heart ratejregm and some other fluctuations with lower fiegcy range.
In general, analysis of fNIRS signal consists of fphases: 1) elimination of the noise or artifag)sgonversion of
optical signals to deoxy and deoxyhemoglobin charipemodynamic changes). Noises existing in henmadin
signal and techniques used to extract functiomghadi from hemodynamic signal are explained belovavilet
algorithm is used to eliminate signal trend. Usimayelet algorithm, signal is divided into eightduency bands;
then, the signal is rebuilt by using seven freqydmends which do not include the frequency bandteel to the
details. Figure 8 shows the primary signal anddgaé¢rended signal.

L L L L L L L s L L L L
0 200 400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200 1400

Figure 8: Primary signal and detrend signal

By eliminating the trend, the signal is normalizgdusing the following formula. An example resudfisignal is
shown in Figure 9.

Xy (1) = X(t) = X

17 1
X, = ?t-:.-OX(t)dt @)

1 2
a=?f[x(t) —xm] dt
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Figure 9: The normalized oxy and deoxy signals

Feature Extraction
After signal pre-processing, features are extradtedh the processed signals. Some features suchmess,

minimum, maximum, gradient, maximum-minimum diffiece, skewness, kurtosis and signal variance araaadt
within 45 s record in cold water. These eight featuare extracted for three oxy, deoxy and THbadggras shown
in Figure 10.

Channel# S-D distance =2 8cm

Figure 10: oxy, deoxy and THb signalsin 45 sintervalsto extract features

Pain Classification
SVM (k=0.01) and KNN (k=1) classifiers are usedctassify pain signals. Data includes two parts. Qa# is
recorded in the NIR Laboratory of the UniversityT@hran and the second part is obtained from fNLRSoratory
of the Drexel University in the United States. Tdata includes information of 21 normal adults tallenng three
phases of CPT.

DI SCUSSION AND CONCLUSION

Results of Classification
Four channels noted in [4] as most accurate char{fnblnnels 3 and 4 of the right hemisphere andreia 12 and

13 of the left hemisphere) are selected out of®nded channels. Table 1 shows accuracy of dieestsiin for
classes 1 and 2, 2 and 3, 1 and 3; class 1 witiseta? and 3; class 2 with classes 1 and 3; assl 8lwith classes 1
and 2 for Oxy signal. According to results, claswith classes 2 and 3 are highly differentiatechbiatividually
and together; the differentiation is higher betwekasses 2 and 3 of the channel 3 than other clanne

Table 1: Accuracy of classification of oxy signal

(92 ™
o °© —_ =] - O - O - O
$=5 825 |8 _5| 85|85 |85
Feature n=8 28| 28+ ESN | 2a| 2| 2
ool g | 83 | 80| 80|89
(2] [2] (2] (2] [2]
Ge2 G588 | 528626252
_ ' _ ' _ OSG| 06® | 06% |06 |06 |00
Channel 3 M|n|murr_1, maximum, max-min gradient, skewness, ksistcand 100 66.66 100 100 33 29
HbO variance
Channel 4 M|n|murr_1, maximum, max-min gradient, skewness, ksistcand 100 50 91667 | 88.88 | 11.11 | 27.78
HbO variance
Channel 12 M|n|murr_1, maximum, max-min gradient, skewness, ksigand 83 58 83 83.33| 16.66 | 22.22
HbO varianc
Minimum, maximum, max-min gradient, skewness, ksigaand
Channel 13 HbO variance 100 58 100 100 55 | 22.22
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Table 2: Accuracy of classification by 1NN for oxy signal

N [32] N [32] N

2 2 2 2 2 2

9| 8% | dc | 85| 8| &«

Feature S | EN| 24| 28« | 287 | S5+

Bg | Bg By EBag| BEng ) Boy

68| 528|852 |0682 | 6588|6588

O ©o O © O © [SIEG O oo O oo

Channel 1| Minimum, maximum, skewness, kurtosis and HbO vaxanh 100 50 100 100 33.33 44.44
Channel 2| Minimum, maximum, skewness, kurtosis and HbO vaxéan 100 41 91 94 22.22 50

Channel 3| Minimum, maximum, skewness, kurtosis and HbO vaxéan 83 50 83 83.33 44.44 38.88

Channel 4| Minimum, maximum, skewness, kurtosis and HbO vaxéan 100 | 58.33 | 100 100 55 61.11

Table 3 shows accuracy of classification by INNdiasses 1 and 2, 2 and 3, 1 and 3; class 1 vatses 2 and 3;
class 2 with classes 1 and 3; class 3 with clabsagl 2 for deoxy signal. Deoxy signal outperfoorg signal for
differentiation between classes 2 and 3 in charalsd 4.

Table3: Accuracy of classification by KNN for deoxy

2 2 @ @ ) @
© © © & @ &
T T & |0l |0l |a2
) ) o oS oS oS
INN Feature % % % % H % s % H
Syl eg a5 e, ]20.]29.
55|65 |655(682682|64%
O - O« O+ 10 © g0 ° 3|0 °Cx
Channel 1| Minimum, maximum, gradient, skewness, kurtosis Hb& variance| 58.33 | 50 75 7222 | 4444 | 50
Channel 2| Minimum, maximum, gradient, skewness, kurtosis Hb& variance| 66.66 | 50 66.66 | 66.66 | 44.44 | 55.55
Channel 3| Minimum, maximum, gradient, skewness, kurtosis Eb& variance| 58.33 | 83.33 | 50 55.55 | 55.55 | 55.55
Channel 4| Minimum, maximum, gradient, skewness, kurtosis Hb& variance| 83 66.66 | 75 83.33 | 16.66 | 22.22

Table 4 shows accuracy of classification by SVMdlasses 1 and 2, 2 and 3, 1 and 3; class 1 vétises 2 and 3;
class 2 with classes 1 and 3; class 3 with claksexl 2 for deoxy signal. SVM and deoxy signal wpeliform for
differentiation between classes 2 and 3 in chaBnel

Table4: Accuracy of classification by SVM for deoxy

N (92 (92 N

° ° ° - o - o °

o < o< o< O C o ¢ o S

o ®© o ®© o ®© =] 05 d oS ®

SVM Feature 57’ g(;: %: ERERN %-ga % EN
Sg|S¢ 58808 Sag | S0

Ge |62 |68 | B8g | 5488|588

_ _ i i OO | OO | OS |OOCT |OGOT | OO©

Channel 1 \l)/l;:lar;lé;n maximum, gradient, skewness, kurtosis &R | 58.33 8333 | 41.66 5555 66.66 61.11
Channel 2 \I)/I;:gglé;n maximum, gradient, skewness, kurtosis &R 66.66 | 58.33 | 5833 50 50 5555
Channel 3 \l)/l;:lar;lé;n maximum, gradient, skewness, kurtosis &titR 58.33 50 5833 66.66 50 2777
Channel 4 \I)/I;::;lé;n maximum, gradient, skewness, kurtosis &R 58.33 50 50 61.11 50 38.88

Table 5 shows accuracy of classification by KNN dtasses 1 and 2, 2 and 3, 1 and 3; class 1 véises 2 and 3;
class 2 with classes 1 and 3; and class 3 witlsetas and 2 for THb signal. Class 1 with classasd23 are highly
differentiated both individually and together; ttiéferentiation is higher between classes 2 and the channel 3
than other channels. However, CCR outperforms okglasses 2 and 3.
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Table5: Accuracy of classification by KNN for THb

N ™ ™

o] e T —_ o (&) Q
10NN Feature 85| 85|85 0o8| 35| 86
EHIEVN | EY | 25 | 28— | 25
58|83 | 28| 3528 | 308|303
ro | xo | o | 3@ |l xad | xad
0w 08 | O8 | O © 08 g 08 g
_ i i i OO0 | OO | OC | OBT |OOT | OCF

Channel 1 \I)/I;:gﬂlé;n maximum, gradient, skewness, kurtosis artdb 66.66 | 66.66 | 5833 | 77.77 55.55 50
Channel 2 \l)/l;:grr]]lé;n maximum, gradient, skewness, kurtosis artdb 75 o5 75 7777 44.44 61.11
Channel 3 \l)/l;:lar;lé;n maximum, gradient, skewness, kurtosis artdb 83.33 | 66.66 | 83.33 72.22 3333 55 55
Channel 4 \I)/I;:gﬂlé;n maximum, gradient, skewness, kurtosis artdb 100 | 66.66 | 91.66| 94.44 44.44 3333

Table 6 shows accuracy of classification by SVMdlasses 1 and 2, 2 and 3, 1 and 3; class 1 vétises 2 and 3;
class 2 with classes 1 and 3; and class 3 witlsetas and 2 for THb signal. Class 1 with classasd3 are highly
differentiated both individually and together; @iféntiation is higher between classes 2 and 3 &= 8 with
classes 1 and 2 in channel 4 than other channils atts almost like oxyhemoglobin.

Table 6: Accuracy of classification by SYM for THb

SVM Feature

CCR betwee
classes 1
and 2
CCR betweel
classes
and 3
CCR betweel
CCR betweel
class 1 \ith
classes 2 and
CCR betwee
class 2 with
classes 1 and 3
CCR betwee
class 3 with
classes 1 and

Minimum, maximum, gradient, skewness, kurtosis an

o
©
w
w
w
al
©
w
w
2}
[}
2}
[}
~
N
N
N
w
©
o5}
©
w
©
o5}
©

Channel 1 .
THb variance

Channel 2 M|n|mur_n, maximum, gradient, skewness, kurtosis end83'33 83.33 41,66 83.33 38.88 2292
THb variance

Channel 3 M|n|murp, maximum, gradient, skewness, kurtosis g nd83.33 50 75 7777 16.66 2292
THb variance

Channel 4 Minimum, maximum, gradient, skewness, kurtosis and 100 66.66 91.66 88.88 27.77 38.88

THb variance

CONCLUSION

Pain evaluation is a very difficult task in peopo are not able to communicate (for example, itsfapeople
undergoing surgery or having stroke) due to thé& kzfca non-verbal method for measuring pain. NIRRinon-
invasive, portable, and inexpensive instrument tmitor hemodynamic brain activity which has thegpial for
measurement. Based on physiological studies, fNlig&als of PFC were recorded when the subjectigutdnd in
the ice water. fNIRS signals of 21 adults were réed in three phases. The fNIRS used involved aedrfar
channels on both sides of the forehead. Near ctanmeasured hemodynamic changes in the supertissales and
the far channels recorded changes in the cerebrixc By analyzing data, two effective featuregevextracted
from the signals recorded from the subjects. Thet fieature was THb gradient during stimulationatiStical
analysis showed that THb exhibited significant cemin all channels during the first stage of CBmpared to the
baseline. The second feature is the difference dmtwnaximum and minimum changes in THb concentratio
(ATHDb); a significant relationship was observed bemv@ain stimulus andTHb in all channels. These results
show that fNIRS can be used as an effective ingninto measure and study hemodynamic responseccayse
pain. The required preprocessing included sigririing, optical signal conversion to oxy and dewsyoglobin
changes, elimination and normalization of signehtt. By extracting proper features from deoxy, axyl THb
signals by SVM and KNN, pain was classified. Theutes indicate proper differentiation between clags classes
2 and 3 and their combinations. These classifinatidid not show good ability to differentiate beéweclasses 2

and 3.
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