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ABSTRACT

Noncoding RNAs (ncRNAs) are an important part of genes and having an important role in human cellular activities 
and serious diseases. To predict ncRNAs structure, there are many computational intelligence algorithms (CIAs) 
that are developed in past studies. However, many studies suggested that there were still many structures that are 
still unpredictable by researchers. In this paper, CIAs algorithms were comprehensively reviewed to predict ncRNAs 
structures. The advantages and disadvantages of CIA algorithms are briefly mentioned related to ncRNA genes. 
Moreover, the latest software tools are also compared and reviewed to identify the structure of ncRNAs for mining deep 
sequencing data. In this study, conventional machine learning algorithms are mainly focused and future trends are 
also described to predict ncRNAs structure. This paper concludes that there is a need for improving CIA algorithms 
by using deep learning architectures in terms of layers and computational complexity to predict ncRNAs structures.

Keywords: Genes, Non-coding RNAs, Prediction of structures, Functional annotation, Computational methods, 
Deep learning

INTRODUCTION

Noncoding RNA (ncRNA) is a typical type of RNA that does not encode a protein. However, they played a vital role in 
disease cells [1]. There are many types of ncRNAs such as transfer RNA (tRNA), ribosomal RNA (rRNA), microRNA 
(miRNA), and long ncRNA (lncRNA) [2]. Last decades, there are many non-coding RNAs (ncRNAs) discovered by 
scientists and still, they are performing extensive experiments on a human body to determine new structure or function 
of ncRNAs genes in different organisms [3]. The researchers noticed that there are ncRNAs genes involved in the 
modification of RNA stability, translation and even protein degradation [4]. A wide variety of genomic sequences of 
ncRNAs genes are publicly available but still, many structures or functions are unknown.

Structure prediction of ncRNAs is nowadays a very hot research topic among many scientists in the domain of 
bioinformatics. To determine structural information of ncRNA genes, the authors are applying many Computational 
intelligence algorithms (CIAs). Such as, the authors are trying to classify RNA structure based on real and pseudo-
MicRNA and then reconstructing evolution patterns of ncRNA genes [5]. Accordingly, it is very important for any 
CIAs algorithms to determine accurately structure of ncRNA genes. However recently, this computational intelligence 
for searching ncRNA gene’s structure field has been neglected compared to protein-coding genes. 

According to study, it is very much difficult to predict and classify the structure of many RNA genes. So discovering 
a function of RNAs it is essential to have a good model of its structure. But it is very much challenging task for 
determining the complete structure (‘tertiary structure’) of an RNA. In practice, this task required many efforts and it 
is a time-consuming job [6]. Around seventies, the researchers are trying to develop many computational models for 
predicting RNA secondary structure. In Figure 1, a broad overview of the type of structures associate programs and 
resources are visually represented to analyze them in many different aspects.
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Figure 1 An example of a basic structure of Non-coding RNA (ncRNA)

Good modeling of RNA structure is critical that provides some of the evidence or information towards a clear 
explanation of its function. Determining the tertiary structure of RNA is a difficult job. Therefore, computational 
intelligence algorithms (CIAs) and methods are proposed in past studies by many authors to predict three basic 
structures of ncRNA genes. It noticed that the authors are mainly trying to focus on the likelihood of the secondary 
structure. To predict structure, they are detecting the pattern of intramolecular base pairs (A-U, G-C, and G-U) [7]. An 
example of ncRNA genes structures is visually displayed in Figure 2. 

The primary structure of RNA is a sequence-specific process that determines some functional properties, like mature 
miRNA and siRNA molecules base-pair to their targets [8]. Compare to the primary structure, the authors are trying to 
predict many different secondary and tertiary structures of RNA genes. To update the structures of genes, the authors 
are trying to diagnosis many diseases such as cancer through long ncRNA-binding proteins [9]. As a result, the 
primary structure prediction through CIA algorithms is very important to save them from many diseases. Moreover, 
the scientists discovered that the ncRNAs has many different gene expression patterns that are used for cancer 
diagnosis [10].

Primary Secondary Tertiary

Figure 2 Visual example of the primary, secondary and tertiary structure of non-coding RNA structure

Computational biology domain, the authors are also discovered that the prediction of secondary structures is also an 
important and time-consuming task. In particular, the secondary structure elements are overall accountable for folding 
energy that is also available in the tertiary structure of ncRNA genes. As shown in Figure 2, secondary structure poses 
very important biophysical property and it is easy to predict for CIA algorithms compare to the tertiary structure 
of ncRNA genes. Therefore, there are many CIA algorithms and methods have been proposed in the literature for 
predicting secondary structure from the primary sequence [11]. For example, the authors in [11] paper proposed a 
simple computational intelligence algorithm to detect secondary structure through maximum number of base pairs. 
In practice, they implemented dynamic programming algorithm to predict RNA secondary structure. To recognize or 
detect pseudoknot structure is one of the complicated tasks and computationally expensive tasks for CIA algorithms 
as observed by many scientists. The reason is that the pseudoknot structure is sometimes non-tree like structure. A 
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pseudoknot is predominant in many ncRNA genes. Still, there are many authors that ignored pseudoknot structure due 
to complex structure and computational expensive [12].

Compare to pseudoknot structure, the authors in the past studies have developed many computational intelligence 
algorithms (CIAs) for predicting the secondary and tertiary structure of ncRNA genes. They performed many 
experiments and high-throughput to determine the previously mentioned ncRNA structures. In human organs, many 
forms of RNA secondary structures are not having the same biological function [13]. As a result, it is very much 
difficult to derive the tertiary structure of ncRNA genes in a hierarchic way [14]. This job is very complicated and it 
is not straight-forward by humans as well as computer experts. 

Template-based and de novo prediction algorithms are widely utilized in the past systems to model and predict the 
tertiary structure of ncRNA genes. In the case of template-based model approach, the authors are not known homology 
compared to other RNA structures so it can be easy to predict tertiary structure through this approach. On the other 
hand, the de novo algorithm was totally depended on the 3-D structure by stabilizing non-canonical base pairs and 
van der Waals interactions [15]. In practice, it is very much important to determine the tertiary structure of ncRNA 
genes because it poses very important biological processes [16,17]. Compare to primary and secondary structures, the 
tertiary used different conditions, interactions in proteins [18-21].

The human ncRNA genes are highly limited to functional elements and rules of interactions compared to protein-
coding RNA genes [22-25]. In this paper, we are briefly reviewed all computational intelligence algorithms (CIAs) 
to predict primary, secondary and tertiary structures of ncRNA including long (lncRNA). The long noncoding RNA 
(lncRNA) is, on the other hand, has been poorly studied in the past papers by authors [26]. Therefore, the ncRNA 
including lncRNA genes are both studies in this study especially in the field of computational biology. The subsequent 
section is described in brief all CIA algorithms for predicting structures of ncRNA genes.

Computational Intelligence Algorithms 

In gene regulation and other cellular functions, ncRNA genes and RNA structural regulatory motifs play important 
roles. Their specific secondary structures are often considered critical to their functions and are regularly conserved in 
phylogenetically or functionally related sequences. It is still a challenge in bioinformatics research to predict common 
RNA secondary structures in multiple unaligned sequences. One of the most important and challenging problems 
in computational biology is the computational identification of non-coding RNA (ncRNA) genes. Existing methods 
mostly dependent on homology information that will limit prediction and identification to ncRNA genes with known 
homologs.

An overview of the latest structure prediction computational tools is displayed in Table 1. In this table, there are 
important methods mentioned with features and machine learning algorithms that have taken from ref [27-46]. In 
addition to this, the online tools for structure prediction of ncRNAs genes are shown in Table 2. This information is 
presented to help the computer scientist and biologist to quickly understand the state-of-the-art methods for prediction 
of structures. Those systems mentioned in Table 1 are explained in the subsequent paragraphs.

Table 1 State-of-the-art computational tools for structure prediction

Reference Tools Features Computational Methods

[27] RNAz Predicting structural ncRNAs 1 MFE RNA folding+2 SVM 

[28] Foldalign RNAs Structure and Sequence Alignment Foldalign+Sankoff

[31] StrAl Structural alignment of ncRNAs Base pairing probabilities

[32] MASTR Multiple alignment for strctural RNAs 3 McMC+4 SA

[33] foldalignM Multiple structures and sequence alignment foldalign+pairwise scans

[34] RNA-sampler Prediction of secondary structure Base pairing+iterative method

[37] Denovo Structure prediction for ncRNAs Features+5 NN

[39] miRanalyzer Predict the structure of microRNA 1 MFE+Vienna RNA

[46] lncRNA_MDFL lncRNA structure predictor Multiple features+deep learning
1 Minimum Free Energy (MFE) RNA; 2 Support vector machine; 3 Markov chain Monte Carlo (McMC); 4 Simulated annealings; 5 Neural 
network
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Table 2 Online tools for structure prediction of Non-coding RNAs

Reference Name 1URL
[27] RNAz www.tbi.univie.ac.at/~wash/RNAz
[28] Foldalign http://rth.dk/resources/foldalign/
[31] StrAl http://www.biophys.uni-duesseldorf.de/stral/download.php
[32] MASTR http://mastr.binf.ku.dk/
[33] foldalignM http://rth.dk/resources/foldalign/
[34] RNA-sampler http://ural.wustl.edu/software.html
[37] Denovo http://csbl.bmb.uga.edu/publications/materials/tran/
[39] miRanalyzer http://web.bioinformatics.cicbiogune.es/microRNA/
[46] lncRNA_MDFL http://compgenomics.utsa.edu/lncRNA_MDFL/

1 Universal resource locator

Prediction of secondary structure is performed by a scanning method known as Zuker minimum-energy folding 
algorithm for detecting of non-coding RNAs (ncRNAs) sequence [27]. In that study, the authors argue that this model 
is more stable to predict secondary structure that is undoubtedly important in most noncoding RNAs. In [4], the 
authors combined comparative sequence analysis and structure prediction to determine the appearance of large-scale 
genomic screens. In that research study, they presented a system based on a measure of RNA secondary structure. The 
authors claim that this approach is accurate and faster compared to other methods in the past studies. A comparison 
study was conducted to determine the structural presentation of noncoding RNAs (ncRNAs) [6]. The authors also 
noticed that 40% of the predicted structure RNAs overlap with the detected sites. 

In another study [28], the authors showed that the searching of ncRNAs genes and structural RNA elements are 
difficult tasks for experts because they often conserved in structure rather than in a sequence. In that study, the 
pairwise local alignment and the Sankoff algorithm are utilized to determine the structural alignment of multiple 
sequences. However, the authors introduced a new method based on Genetic programming to predict thousands of 
ncRNA genes [29]. The authors tested this method on sixteen predictions and show that twelve of these are actual 
ncRNA transcripts. 

The authors suggested that advance computational methods are required to accurately detect ncRNAs because there 
is an increasing number of genomic sequences [30]. Therefore, they proposed a program known as Dynalign by 
using support vector machine (SVM) for predicting secondary structures. The authors also compared Dynalign with 
other two methods such as RNAz and QRNA and obtained significant results. Also in [31], the authors argue that the 
structure prediction of ncRNAs is very difficult as these sequences may evolve by compensatory mutations. Despite 
these facts, the proper alignment of multiple structural RNA sequences remains a problem. In that study, the authors 
presented a system known as StrAl through a heuristic method for the alignment of ncRNA that reduces sequence-
structure alignment. The authors also compared StrAl algorithm with ClustalW and reported significantly higher 
prediction accuracy. 

To consider multiple alignment and structure prediction for ncRNAs genes, the authors developed a model by using 
a Markov chain Monte Carlo (McMC) algorithm in a simulated annealing framework [32]. In this framework, the 
authors iteratively improved the problem of multiple alignments of structural RNAs by minimizing a cost function. 
They showed that the proposed system is very effective and efficient compared to other state-of-the-art systems. A 
different study was conducted about computational RNA structure prediction [33]. The authors presented that multiple 
alignments are required for the large sequence to predict structure by advanced computational techniques. However, if 
there are few sequences then it is difficult to predict the structure of ncRNAs genes. Therefore in that study, the authors 
developed a system known as PMcomp that can cluster sequences based on sequence and structure similarity. The 
authors developed PMcomp program, in Java and PERL scripts and achieved higher prediction accuracy compared 
to other past methods. 

The authors presented a solution to predict common RNA secondary structures based on base-pairing probabilities 
and iterative techniques for multiple unaligned sequences [34]. This algorithm can be also suitable for multiple 
sequence alignment problems as noticed by the authors due to introduce of iteratively convergence technique. The 
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structural alignments were more efficient as compared to other programs in sequences of a wide range of identities, 
and a more accurate representation of RNA secondary structure conservations was achieved. Whereas, the authors 
presented a new version of the RNAalifold method for the prediction of a consensus structure through improving the 
evaluation of sequence covariance, structure centroid, and stochastic backtracking approaches [35]. In the past, the 
authors are trying to compute suboptimal structures based on Boltzmann weights to determine the statistical features 
of the ncRNA structure. The author concluded that the new version of the RNAalifold method is more accurate 
compared to other computational methods while maintaining the same complexity time. 

The latest computational technique such as deep learning algorithms is developed to predict the secondary structure 
of miRNA from the large pool of sequenced transcripts from a single deep sequencing run remains a major challenge 
[36]. The authors named this model as miRDeep that is applied to the latest dataset of RNA sequence and achieved 
a higher prediction rate compared to other systems. A de novo prediction algorithm is developed for prediction of 
ncRNA genes using features derived from the structures and sequences [37]. The authors extracted the set of features 
from known ncRNA genes and then performed training based on these features by a neural network-based classifier. 
The authors achieved an average prediction sensitivity of 68% while specificity was 70% for identifying potential 
ncRNA genes. There is another improvement done for predicting secondary structures of RNAs based on decoding 
the posterior probabilities of the base-pairing algorithm to overcome the problem of minimum free energy methods 
known as improved CentroidFold algorithm [38]. 

Whereas, a new machine learning algorithms were developed to predict the new microRNAs structure and achieved 
an area under the curve values of 97.9% and recall values of up to 75% on unseen data based on random forest 
classifier known as miRanalyzer [39]. The authors utilized minimum free energy (MFE) and the Vienna RNA package 
for predicting the secondary structure. To understand RNA sequence structure, the authors developed a program 
based on existing design of RNA structure [40]. The authors observed that when designing a small interfering RNAs 
through the set of nearest neighbor parameters consideration RNA structure is very important. It includes methods for 
secondary turner group. Moreover, the authors also suggested that structure prediction is often important for analyzing 
the deep sequence of ncRNAs [41]. As a result, a genome-wide algorithm was developed to analyze the structure of 
MicroRNAs and compared with other systems too [42]. The authors obtained high sensitivity and specificity using 
some basic properties to recognize the structure of microRNAs.

The prediction of the structure of ncRNAs is also important to diagnose the cancer metastasis [43]. As in this study, 
the authors reported that the prediction of the long ncRNAs (lncRNAs) structure is also important. Therefore, the 
authors developed a computational model known as IPKnot to predict the secondary structures based on maximizing 
excepted accuracy [44]. Also, the authors detected the structure of lncRNAs, related to the development, epigenetics, 
cancer, brain function and hereditary disease [45]. It was also noticed that the long noncoding RNAs (lncRNAs) 
are emerging class of ncRNA genes plays an important role in cellular functions [46]. In practice, the lncRNAs are 
carefully connected with the development of some diseases. As a result, the authors developed a lncRNA-MFDL 
system to predict and identify lncRNAs through fusion of variant features and multi-layer deep learning algorithms. 
By using the 10-fold cross-validation test, the authors reported 97.1% accuracy, which is very high as compared to 
other systems.

The advantage and limitations of some of the above-mentioned computational tools are mentioned in Table 3. This table 
is clearly represented that the previously developed methods for structure predictions are suffered from computational 
complexity and focused only on certain structures for the finding of genes. As described in this table, the RNAz [4] 
computational tool is better for prediction of secondary structures but having high computational cost due to use 
to support vector machine (SVM) algorithm. It noticed that the SVM algorithm needs a lot of training data set by 
making it difficult for the prediction of complex structures. Instead of using RNAz, there is also another MASTR 
[32] developed to predict multiple sequence structures. However, the MASTR system is developed on the particular 
sequence structures. Moreover, the RNA-Sampler [34], Denovo [37] and lncRNA_MDFL [46] tools are required 
higher computational time and therefore these are not suitable for determining the structures of next-generation-
sequences (NGS).
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Table 3 Various comparisons of State-of-the-art computational tools for structure prediction

Reference Methods Advantage Limitations
[27] RNAz Better accuracy of prediction High computational cost due to 1SVM so not suitable for 2NGS

[32] MASTR It can predict multiple sequence structures Does not consider sequence-depend structures
[34] RNA-sampler Suitable for predicting secondary structures Computational complexity

[37] Denovo Not suitable for ncRNAs structures High complexity time
[46] lncRNA_MDFL Suitable for long ncRNAs structure Better computational complexity

1 Support vector machine; 2 Next generation sequence

DISCUSSION

Structure prediction of non-coding RNAs (ncRNAs) is still a challenging task for biological experts and computational 
intelligence person. Although, there are many computational intelligence algorithms (CIAs) [27-46] have been 
developed in the past to predict the primary, secondary and tertiary structure of non-coding RNA structure. Researchers 
are trying to develop computational tools for prediction the previously mentioned structure for ncRNA including long 
ncRNA (lncRNA) genes. Since the ncRNA genes are transcripts that function directly as RNA molecule structure. 
These ncRNA genes are not being translated into protein. As a result, the prediction of ncRNA genes structure is 
stilling a challenging and time-consuming task because there are still hidden structures in recent genomes. In the 
bioinformatics domain, the de novo prediction ncRNA genes is still a difficult task due to lack of statistical significant 
properties in primary genome sequences. 

According to the literature review, the secondary structure prediction through CIA algorithms has obtained 
significantly better results compared to other structures. Those CIA algorithms included traditional or modern multi-
layer deep learning architecture techniques. Table 1 described those CIA algorithms that are utilized in the past to 
predict structures of ncRNA genes. Some authors have also developed online tools for other researchers to assist them 
in automatically identify the structures of ncRNA genes. Those online tools or resources are mentioned in Table 2. 

There are many systems developed in the past to predict primary or secondary structures. Those computational intelligent 
systems are described in Table 3. However, most of them are not accurate and they recognize the structure in a large 
amount of time. Therefore, those algorithms are not suitable for screening large genome sequence. Recently, authors 
were trying to propose computational intelligence algorithms (CIAs) to analyze the structural [28-50] information and 
functional annotation [51-73] of ncRNA genes. Due to limit the scope, the structure prediction algorithms are only 
described in this paper. If someone author is interested to study computational intelligence methods for functional 
annotation then he or she can study this article [74].

According to the literature review, it concludes that there is not a single study to study computational intelligence 
algorithms (CIAs) for predicting all three structures of ncRNA genes including both traditional and state-of-the-art 
deep learning architectures. For predicting structures of ncRNA including lncRNA genes, some authors are trying to 
use the convolutional neural network (CNN) model and softmax classifiers compared to traditional algorithms such as 
support vector machine (SVM), neural network (NN) or decision-tree. After doing experiments, the authors conclude 
that the advanced CNN models are very powerful to identify the structure of ncRNA genes because these models can 
be used to train large genome sequences and predicted response time is very fast [67]. As a result, these advanced 
models are very fast once they trained on a large sequence. Unluckily, at present, there are few CIA algorithms 
proposed through advance deep learning algorithms in the past systems to predict structure. 

To highlight these issues, let us consider a study of Washietl, et al., [4], the authors developed RNAz system to predict 
the structure of ncRNAs but it requires high computational cost due to support vector machine (SVM) classifiers. 
Therefore, it is unsuitable for the next-generation sequence (NGS) or where there is a requirement for big data. 
Also, the authors developed an RNA-sample system to predict secondary structure but this system required high 
computational complexity [34]. This information is briefly described in Table 3 about structure prediction. From this 
table, it noticed that the high-throughput sequences are not possible to extract from the large-sequence ncRNA genes. 
Therefore, these approaches must require deep-learning algorithms to effectively detect large sequence structures 
without focusing on domain expert knowledge about machine learning or data mining algorithms.

A similar trend can be seen in the case of functional annotation of ncRNAs or lncRNAs genes. Many authors utilized 
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old fashion machine learning algorithms as mentioned above. In past studies, the authors developed many different 
computational approaches to annotate the function of thousands of ncRNAs or lncRNAs genes. In fact, the functional 
annotation of lncRNAs genes is very important and vital step to detect human diseases because it has diverse biological 
processes. However, the authors developed many computational techniques to provide valuable important insides 
to functionally annotate the ncRNAs or lncRNAs genes. In short, the coming advance in the study of lncRNAs, 
especially at a large genome-wide scale, poses an exciting chance to examine the lncRNA function in the future.

Current Computational Challenges

Computational intelligent techniques had many limitations that developed in the past systems for functional annotation 
of noncoding RNAs (ncRNAs). It was mentioned before that the ncRNAs genes are a very much important function 
for the operation of the cell. Therefore, the authors focused more on developing methodological techniques for 
understanding the different functions of ncRNAs. The authors applied many computational intelligent models to 
determine functional divergence and resemblance ncRNAs genes in the cell along with limited data sources. 

There are many varieties of ncRNAs such as micro RNAs or long noncoding RNAs. Therefore to get accurate accuracy 
for determining the functions of ncRNAs is still a challenging task for computational intelligent methods. Compare to 
functional annotation of ncRNAs, the authors have also developed structure prediction algorithms that obtained higher 
accuracy. Currently, many authors proposed computational methods to analyze the structural [28-46] and functional 
annotation [53-72] of ncRNAs.

CONCLUSION

Advances in bioinformatics have made enormous progress toward the development of computational techniques for 
structure and functions of ncRNA or lncRNA. In this review article, the advanced computational methods are focused 
to annotate the function of ncRNAs. This paper described the computational methods to predict the structure or to 
functionally annotate the ncRNAs genes. To increase the accuracy of functional annotation, there is a dire need for 
domain expert knowledge. In fact, the state-of-the-art computational techniques that have been used in the past required 
for pre-processing of raw input data, feature selection and to fine-tune parameters for getting high accuracy. However, 
the authors put many efforts to do pre- or post-processing on data instead of developing effective computational 
intelligent techniques. It was noticed that the deep learning algorithms are classifying the data without doing pre- or 
post-processing steps. These algorithms are advanced in the domain of CIA techniques. The methods were developed 
using deep learning algorithms get higher accuracy for data classification. In practice, the deep learning algorithms 
have outperformed compared to conventional machine learning algorithms for functional annotation of ncRNAs 
but still lack of expert knowledge is required to define multilayer architecture. As reported in the past studies, the 
techniques developed using deep learning algorithms must be further investigated in terms of performance. 
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