Tumour Induced Osteomalacia: An Often-Missed Cause of Chronic Hypophosphatemia

Tushar Dhakate1*, Abhishek Dixit1, Shweta Khurana1 and Billa V2

1 Senior Resident, Department of Nephrology, Bombay Hospital Institute of Medical Science and Research, Mumbai, Maharashtra, India

2 Associate Professor, Department of Nephrology, Bombay Hospital Institute of Medical Science and Research, Mumbai, Maharashtra, India

*Corresponding e-mail: tushardhakate86@gmail.com

ABSTRACT

Significant hypophosphatemia in adult is uncommon, in which the most common culprit being Vitamin D deficiency. Hypophosphatemia in adults, require proper attention as it may indicate paraneoplastic effect of mesenchymal tumour (Fibroblast growth factor 23 secreting tumour). The diagnosis of such condition at early stage, along with prompt treatment can correct hypophosphatemia and improve the patient symptomatically. Here we are presenting a case of 48 years old female who had severe hypophosphatemia and on work up found to have FGF23 secreting mesenchymal tumour of the naso-ethmoid bone, surgical removal of which corrected hypophosphatemia and showed clinical improvement.

Keywords: Hypophosphatemia, FGF23, Osteomalacia, Mesenchymal tumour

Abbreviations: 1,25-OH Vitamin D: 1,25-Dihydroxy Vitamin D; FGF23: Fibroblast Growth Factor 23; PET: Positron-Emission Tomography; CT: Computed Tomography; TIO: Tumour Induced Osteomalacia; NSAIDs: Nonsteroidal Anti-Inflammatory Drugs; TmP/GFR: Tubular Maximum Reabsorption Rate of Phosphate to Glomerular Filtration Rate; DEXA: Dual X-ray Absorptiometry; NaPi-IIa: Na+-dependent P, cotransporter type IIa; FESS: Functional Endoscopic Sinus Surgery; PMTMCET: Phosphaturic Mesenchymal Tumor (Mixed Connective Tissue Variant); PTH: Parathyroid hormone

INTRODUCTION

Osteomalacia is characterized by impaired mineralization of bone. TIO is an acquired form of osteomalacia which is characterized by severe hypophosphatemia leading to osteomalacia due to excess secretion of FGF23. Here we describe a case of 48 years old female who presented with chronic low backache and spontaneous fracture of bilateral femoral necks. Laboratory evaluation showed low phosphorus, low normal calcium, normal serum parathyroid hormone and 25-OH vitamin D, but significantly high FGF23. PET-CT showed bilateral multiple ribs sternal body, right sacral ala, bilateral inferior pubic rami and bilateral femoral neck fractures, along with a hypermetabolic heterogeneously enhancing, right naso-ethmoid mass. Functional sinus endoscopy guided biopsy of the naso-ethmoidal mass led to the diagnosis of a hemangiopericytoma. Forty-eight hours after surgical excision of the tumour, there was normalization of serum FGF23 and a rise in the serum phosphate level. The differential diagnosis of TIO needs to be considered in every adult patient with severe unremitting hypophosphatemia. A high index of suspicion can potentially reverse the underlying disease process and reduce further morbidity.

CASE REPORT

A 48 years old female with no previous comorbidities, presented to our institute with complaints of chronic low backache for 4-5 years, bony pain, difficulty in walking which progressively worsened to such an extent that she was bedridden at the time of presentation. She had been seen by orthopaedics and rheumatology earlier and was labelled to have osteoporosis. She was treated with calcium, vitamin D, pain killers (including NSAIDs), and also steroids to relieve her pain. DEXA scan done showed a T score of -2.7 suggestive of severe osteoporosis. There was no muscle
weakness, wasting and paraesthesia. There was no history of fever, night sweats and weight loss. There was no obvious history of nephrolithiasis or symptomatic fractures.

Her physical examination was unremarkable except for pain during movement of joints without any joint deformity. Review of her biochemistry revealed persistent hypophosphatemia, with levels ranging from 2 to 2.4 mg% (Normal: 2.5-4.9 mg%), along with elevated alkaline phosphatase in the range of 250 to 400 mU/ml (Normal: 46-116 mU/ml). All other biochemical parameters including serum calcium, vitamin-D, serum i-PTH, serum TSH, serum protein electrophoresis was normal. Trends of laboratory as below (Table 1).

Table 1 Trend of lab parameters over period of time

<table>
<thead>
<tr>
<th>Laboratory parameters</th>
<th>2011</th>
<th>2012</th>
<th>2014</th>
<th>2015</th>
<th>7 days prior to surgery</th>
<th>48 hours post-surgery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serum Creatinine (mg%)</td>
<td>0.87</td>
<td>NA</td>
<td>0.72</td>
<td>0.8</td>
<td>0.8</td>
<td>NA</td>
</tr>
<tr>
<td>Serum Calcium (mg%)</td>
<td>8.5</td>
<td>8.6</td>
<td>9.2</td>
<td>9.18</td>
<td>8.2</td>
<td>8</td>
</tr>
<tr>
<td>Serum Phosphorus (mg%)</td>
<td>NA</td>
<td>2</td>
<td>NA</td>
<td>2.41</td>
<td>1.2</td>
<td>2.1</td>
</tr>
<tr>
<td>Serum Alkaline Phosphatase (mU/ml)</td>
<td>421</td>
<td>257</td>
<td>414</td>
<td>202</td>
<td>278</td>
<td>124</td>
</tr>
<tr>
<td>Serum Vit-D (ng/ml)</td>
<td>NA</td>
<td>37</td>
<td>NA</td>
<td>37</td>
<td>160</td>
<td>NA</td>
</tr>
<tr>
<td>Serum i-PTH (pg/ml)</td>
<td>NA</td>
<td>NA</td>
<td>65.53</td>
<td>25</td>
<td>23.31</td>
<td>-</td>
</tr>
</tbody>
</table>

Her TmP/GFR was calculated 0.48 using nomogram of Walton and Bijvoet [1]. We reinvestigated her. Her laboratory values were as in Table 2.

Table 2 Lab parameters at time of admission

<table>
<thead>
<tr>
<th>Laboratory parameters</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serum Creatinine (mg%)</td>
<td>0.8</td>
</tr>
<tr>
<td>Serum Calcium (mg%)</td>
<td>8.5</td>
</tr>
<tr>
<td>Serum Albumin (mg%)</td>
<td>4</td>
</tr>
<tr>
<td>Serum Phosphorus (mg%)</td>
<td>1.2</td>
</tr>
<tr>
<td>Serum Alkaline Phosphatase (mU/ml)</td>
<td>278</td>
</tr>
<tr>
<td>Serum Vit-D (ng/ml)</td>
<td>160</td>
</tr>
<tr>
<td>Serum 1,25-OH Vitamin D (pg/ml)</td>
<td>38.6</td>
</tr>
<tr>
<td>Serum i-PTH (pg/ml)</td>
<td>23.31</td>
</tr>
<tr>
<td>Serum FGF 23 (RU/ml)</td>
<td>6170</td>
</tr>
<tr>
<td>24-hour Urinary Calcium (mg/24 hour)</td>
<td>86.6</td>
</tr>
<tr>
<td>Spot Urinary Creatinine (mg/dl)</td>
<td>68.5</td>
</tr>
<tr>
<td>Spot Urinary Phosphorus (mg/dl)</td>
<td>3.9</td>
</tr>
</tbody>
</table>

The result clearly demonstrated renal phosphate wasting. Having eliminated hyperparathyroidism and Fanconi’s syndrome and with a high FGF23 value, we suspected TIO. A PET-CT was done which showed fractures in multiple ribs, sterna, body, right sacral ala, bilateral inferior pubic rami and bilateral femoral neck. A hypermetabolic, heterogeneously enhancing right naso-ethmoid mass was also detected (Figure 1).

Figure 1 PET CT and CT showing hypermetabolic, heterogeneously enhancing right naso-ethmoid mass (as shown by red arrow)
FESS guided naso-ethmoidal biopsy was done which showed a hemangiopericytoma (with stag horn appearance of blood vessels) on histology (Figure 2).

![Image of hemangiopericytoma](image_url)

Figure 2 FESS guided naso-ethmoidal biopsy showing a hemangiopericytoma (with stag horn appearance of blood vessels)

Subsequently, Functional endoscopic sinus surgery guided full resection of the naso-ethmoidal mass was done. After 48 hours of surgery, her serum phosphorus increased to 2.1 mg%, serum alkaline phosphorus was decreased to 124 mU/ml, serum calcium 8 mg% and serum FGF23 decreased significantly to 34.7 RU/ml. After discharge she lost to follow up.

DISCUSSION

TIO is characterized by renal phosphate wasting leading to severe hypophosphatemia and its clinical manifestations. FGF23, a phosphatonin causes inhibition of sodium-phosphate co-transporters (NaPi-IIa and NaPi-IIc) localized in the proximal tubule leading to decreased absorption of phosphate and also inhibits vitamin D 1-alpha-hydroxylase thereby suppressing the production of 1,25-OH vitamin D [2].

In review article of 308 cases by Quoting Jiang, et al., about 46% were females and 56% were males with a mean age of 45.3 years, with 40% of tumours originate in bones and 55% in soft tissues. The most common location are the lower extremities (56%) followed by head (31%), and rarely it can be seen in the upper extremities (5%), thoracic region (5%) and hip (3%) [3].

Imaging modalities like PET-CT, octreotide scintigraphy and Sestamibi parathyroid scintigraphy helps to locate occult tumour [3]. In our case the patient presented with bony pain and pathological fracture but there were no ENT complaints related with naso-ethmoidal mass which got detected incidentally during work up for TIO.

On the basis of histological finding of 16 cases of TIO, Weidner in 1991 named the tumours as phosphaturic mesenchymal tumours which were further subdivided into four categories [4]:

1) Mixed connective tissue variant (PMTMCT),
2) Osteoblastoma-like variant,
3) Non-ossifying fibroma-like variant, and
4) Ossifying fibroma-like variant.

Of four categories, the most common histologic variant was PMTMCT (70-80%) which consist of primitive stromal cells, prominent vessels, and osteoclast like giant cell. These are usually benign but rarely can be malignant [5].

Patients with TIO often present with nonspecific symptoms like generalized weakness, easy fatigability, bone pain,
muscle weakness. Rarely can be presented with reduced height, and multiple spontaneous fractures, primarily in
the ribs, vertebral bodies, and femoral neck. Because of above symptoms patients often visit multiple specialist
like physician, rheumatologist, orthopaedic surgeon and even physiotherapist. Biochemistry in TIO includes
hypophosphatemia due to renal phosphate wasting, low levels of 1,25-di-hydroxy vitamin D due to inhibition of
1alpha hydroxylase and normal serum calcium and PTH. TMP/GFR was calculated with the help of nomogram of

Definitive treatment of TIO is surgical excision of tumour so as to remove source of causative agent FGF23. After
excision of tumour the serum phosphorus level normalize by 5 days in most cases [6]. In our case as shown in Table
1, serum FGF23 level normalise after 48 hours of surgery and serum phosphorus became 2.1 mg%.

In rare instance calcitriol or alfacalcidol or cinacalcet has been tried for the treatment of TIO patients which correct
hypophosphatemia by inducing hypoparathyroidism [7].

Recently, phase I trial of injection of humanized anti-FGF23 antibody is published for adult patients with X-linked
hypophosphatemic rickets show promising results. This antibody therapy may be useful for patients with TIO [8].

CONCLUSION

TIO is a rare disorder that presents with muscle weakness, bone pain, and osteomalacia (and ultimately, if left
untreated, fractures). Adult with these symptoms with persistent hypophosphatemia should be thoroughly evaluated to
rule out TIO. As TIO mostly caused by benign mesenchymal tumour, complete cure is possible by surgical resection
of tumour mass.

DECLARATIONS

Conflict of Interest

The authors and planners have disclosed no potential conflicts of interest, financial or otherwise.

Consent

Written informed consent was obtained from the patient for publication of this case report and accompanying images.

REFERENCES

peptide overexpressed by tumors that cause phosphate wasting.” The Journal of Clinical Endocrinology & Me-
an analysis of 32 cases and a comprehensive review of the literature.” The American Journal of Surgical Pathol-